File size: 8,527 Bytes
395598d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import json
import pandas as pd
import gradio as gr
import numpy as np
from PIL import Image
from theme_tops import DarkTheme
from clip_base import OpenAiClipModel
import tensorflow as tf
tagged_images = {}

MODEL_PATH = os.path.join(os.getcwd(), 'clip_tflite_model.tflite')
JSON_PATH = os.path.join(os.getcwd(), 'categories.json')

def test_model(image):
    """Test the TFLite model with an uploaded image"""
    try:
        # Check if model and JSON files exist
        if not os.path.exists(MODEL_PATH):
            return "Error: Model file not found. Please generate the model first."
        if not os.path.exists(JSON_PATH):
            return "Error: Categories file not found. Please generate the model first."

        # Load and preprocess image
        processed_image = load_and_preprocess_image(image)

        # Load the TFLite model
        interpreter = tf.lite.Interpreter(model_path=MODEL_PATH)
        interpreter.allocate_tensors()

        # Get input and output details
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()

        interpreter.set_tensor(input_details[0]['index'], processed_image)

        interpreter.invoke()

        embeddings = interpreter.get_tensor(output_details[0]['index'])

        with open(JSON_PATH, 'r') as f:
            categories = json.load(f)

        scores_with_ids = []
        for i, score in enumerate(embeddings.flatten()):
            scores_with_ids.append((float(score), i))

        scores_with_ids.sort(reverse=True)  # Sort by score (first element of tuple)

        top_results = scores_with_ids[:5]

        results = []
        for score, category_id in top_results:
            percentage = score * 100
            category = next((cat['title'] for cat in categories if cat['id'] == category_id),
                            f"Category {category_id}")
            results.append(f"{category}: {percentage:.2f}%")

        return "\n".join(results)

    except Exception as e:
        return f"Error processing image: {str(e)}"

def load_and_preprocess_image(image):
    """Preprocess image for model input"""
    if isinstance(image, str):
        image = Image.open(image)
    elif isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    image = image.resize((224, 224))
    image = image.convert('RGB')
    image = np.array(image).astype(np.float32) / 255.0
    image = np.expand_dims(image, axis=0)
    return image

def process_images(payload):
    tflite_model = OpenAiClipModel(payload=payload).build_model()

    return tflite_model

# Function to add a new tag category
def add_tag_category(tag_category):
    # Normalize and validate tag category
    tag_category = tag_category.strip()
    if not tag_category:
        return "Please enter a valid tag category", None

    # Initialize the tag category if it doesn't exist
    if tag_category not in tagged_images:
        tagged_images[tag_category] = []

    return f"Tag Category '{tag_category}' Added", gr.File(visible=True), ""


# Function to get updated tag category choices
def get_tag_category_choices():
    return gr.Dropdown(choices=list(tagged_images.keys()))


def show_category_images(tag_category):
    if not tag_category:
        return None, None

    if tag_category in tagged_images:
        return (
            gr.Gallery(value=tagged_images[tag_category]),
            tagged_images[tag_category]
        )
    return None, None


# Function to upload images for a specific tag category
def upload_images_for_tag(tag_category, image_files):
    # Ensure the tag category exists
    if tag_category not in tagged_images:
        return "Tag category not found. Add the tag category first.", None, None

    # Replace existing images with new ones for the tag category
    tagged_images[tag_category] = [file.name for file in image_files]  # Replace instead of append

    return (
        f"Added {len(image_files)} images to '{tag_category}'",
        gr.Gallery(value=[file.name for file in image_files]),
        tagged_images
    )



# Function to export tagged images
def export_tagged_images():
    return tagged_images

def clear_uploaded_images():
    return None, None

# Gradio UI
with gr.Blocks(theme=DarkTheme()) as demo:
    gr.Markdown("# Clip -> Tflite - TOPS Infosolutions Pvt Ltd")
    gr.Markdown("Add Classification Tags")

    # Tag Category Input
    with gr.Row():
        tag_category_input = gr.Textbox(
            label="Enter Tag Category",
            placeholder="e.g., Smartphone, Laptop, Tablet"
        )
        # add_tag_category_btn = gr.Button("Add Tag Category")
        tag_category_status = gr.Textbox(label="Action Status", interactive=False)

    gr.Markdown("Images")

    # Image Upload for Specific Tag
    with gr.Row():
        tag_category_selector = gr.Dropdown(label="Select Tag Category", choices=[])
        image_upload = gr.File(
            file_types=["image"],
            file_count="multiple",
            label="Upload Images",
            visible=False
        )
        upload_images_btn = gr.Button("Upload Images for Category")
        clear_upload_btn = gr.Button("Clear Upload")

    # Image Gallery with smaller previews
    image_gallery = gr.Gallery(
        label="Uploaded Images",
        columns=[6],  # Show 4 images per row
        rows=[1],  # Show 2 rows
        height="20",
        object_fit="contain",  # Maintain aspect ratio
        preview=False,
        show_label=False,
        elem_classes="small-gallery"  # Custom CSS class for additional styling
    )

    # Export Section
    with gr.Row():
        # export_btn = gr.Button("Export Tagged Images")
        export_output = gr.JSON(label="Exported Tagged Images")

    with gr.Row():
        submit_btn = gr.Button("Process Images")


    with gr.Row():
        download_button_tflite = gr.File(
            label="Download Tflite Model",
            file_count="single",
            interactive=False,
            type="filepath"
        )

    with gr.Tab("Test Model"):
        with gr.Row():
            with gr.Column():
                test_image = gr.Image(
                    label="Upload Image to Test",
                    type="numpy"
                )
                test_button = gr.Button("Test Image")

            with gr.Column():
                output_text = gr.Textbox(
                    label="Prediction Results",
                    lines=6,
                    interactive=False
                )

        test_button.click(
            fn=test_model,
            inputs=[test_image],
            outputs=[output_text]
        )


    submit_btn.click(
        fn=process_images,
        inputs=[export_output],
        outputs=[download_button_tflite]
    )

    # Add custom CSS for smaller gallery images
    demo.load(js="""
        function() {
            const style = document.createElement('style');
            style.textContent = `         
                .small-gallery img {
                    max-height: 150px !important;
                    width: auto !important;
                    object-fit: contain !important;
                }
                .small-gallery .grid-container {
                    gap: 10px !important;
                }
            `;
            document.head.appendChild(style);
        }
    """)

    # Functionality Connections
    # Add both button click and Enter key press handlers
    # add_tag_category_btn.click(
    #     add_tag_category,
    #     tag_category_input,
    #     [tag_category_status, image_upload, tag_category_input]
    # ).then(
    #     get_tag_category_choices,
    #     None,
    #     tag_category_selector
    # )

    # Add Enter key press handler
    tag_category_input.submit(
        add_tag_category,
        tag_category_input,
        [tag_category_status, image_upload, tag_category_input]
    ).then(
        get_tag_category_choices,
        None,
        tag_category_selector
    )

    tag_category_selector.change(
        show_category_images,
        tag_category_selector,
        [image_gallery, image_upload]
    )

    upload_images_btn.click(
        upload_images_for_tag,
        [tag_category_selector, image_upload],
        [tag_category_status, image_gallery, export_output]
    )

    clear_upload_btn.click(
        clear_uploaded_images,
        [],
        [image_upload, image_gallery]
    )

    # export_btn.click(export_tagged_images, None, export_output)

# Launch the app
demo.launch()