TOPSInfosol's picture
Create app.py
395598d verified
raw
history blame
8.53 kB
import os
import json
import pandas as pd
import gradio as gr
import numpy as np
from PIL import Image
from theme_tops import DarkTheme
from clip_base import OpenAiClipModel
import tensorflow as tf
tagged_images = {}
MODEL_PATH = os.path.join(os.getcwd(), 'clip_tflite_model.tflite')
JSON_PATH = os.path.join(os.getcwd(), 'categories.json')
def test_model(image):
"""Test the TFLite model with an uploaded image"""
try:
# Check if model and JSON files exist
if not os.path.exists(MODEL_PATH):
return "Error: Model file not found. Please generate the model first."
if not os.path.exists(JSON_PATH):
return "Error: Categories file not found. Please generate the model first."
# Load and preprocess image
processed_image = load_and_preprocess_image(image)
# Load the TFLite model
interpreter = tf.lite.Interpreter(model_path=MODEL_PATH)
interpreter.allocate_tensors()
# Get input and output details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
interpreter.set_tensor(input_details[0]['index'], processed_image)
interpreter.invoke()
embeddings = interpreter.get_tensor(output_details[0]['index'])
with open(JSON_PATH, 'r') as f:
categories = json.load(f)
scores_with_ids = []
for i, score in enumerate(embeddings.flatten()):
scores_with_ids.append((float(score), i))
scores_with_ids.sort(reverse=True) # Sort by score (first element of tuple)
top_results = scores_with_ids[:5]
results = []
for score, category_id in top_results:
percentage = score * 100
category = next((cat['title'] for cat in categories if cat['id'] == category_id),
f"Category {category_id}")
results.append(f"{category}: {percentage:.2f}%")
return "\n".join(results)
except Exception as e:
return f"Error processing image: {str(e)}"
def load_and_preprocess_image(image):
"""Preprocess image for model input"""
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
image = image.resize((224, 224))
image = image.convert('RGB')
image = np.array(image).astype(np.float32) / 255.0
image = np.expand_dims(image, axis=0)
return image
def process_images(payload):
tflite_model = OpenAiClipModel(payload=payload).build_model()
return tflite_model
# Function to add a new tag category
def add_tag_category(tag_category):
# Normalize and validate tag category
tag_category = tag_category.strip()
if not tag_category:
return "Please enter a valid tag category", None
# Initialize the tag category if it doesn't exist
if tag_category not in tagged_images:
tagged_images[tag_category] = []
return f"Tag Category '{tag_category}' Added", gr.File(visible=True), ""
# Function to get updated tag category choices
def get_tag_category_choices():
return gr.Dropdown(choices=list(tagged_images.keys()))
def show_category_images(tag_category):
if not tag_category:
return None, None
if tag_category in tagged_images:
return (
gr.Gallery(value=tagged_images[tag_category]),
tagged_images[tag_category]
)
return None, None
# Function to upload images for a specific tag category
def upload_images_for_tag(tag_category, image_files):
# Ensure the tag category exists
if tag_category not in tagged_images:
return "Tag category not found. Add the tag category first.", None, None
# Replace existing images with new ones for the tag category
tagged_images[tag_category] = [file.name for file in image_files] # Replace instead of append
return (
f"Added {len(image_files)} images to '{tag_category}'",
gr.Gallery(value=[file.name for file in image_files]),
tagged_images
)
# Function to export tagged images
def export_tagged_images():
return tagged_images
def clear_uploaded_images():
return None, None
# Gradio UI
with gr.Blocks(theme=DarkTheme()) as demo:
gr.Markdown("# Clip -> Tflite - TOPS Infosolutions Pvt Ltd")
gr.Markdown("Add Classification Tags")
# Tag Category Input
with gr.Row():
tag_category_input = gr.Textbox(
label="Enter Tag Category",
placeholder="e.g., Smartphone, Laptop, Tablet"
)
# add_tag_category_btn = gr.Button("Add Tag Category")
tag_category_status = gr.Textbox(label="Action Status", interactive=False)
gr.Markdown("Images")
# Image Upload for Specific Tag
with gr.Row():
tag_category_selector = gr.Dropdown(label="Select Tag Category", choices=[])
image_upload = gr.File(
file_types=["image"],
file_count="multiple",
label="Upload Images",
visible=False
)
upload_images_btn = gr.Button("Upload Images for Category")
clear_upload_btn = gr.Button("Clear Upload")
# Image Gallery with smaller previews
image_gallery = gr.Gallery(
label="Uploaded Images",
columns=[6], # Show 4 images per row
rows=[1], # Show 2 rows
height="20",
object_fit="contain", # Maintain aspect ratio
preview=False,
show_label=False,
elem_classes="small-gallery" # Custom CSS class for additional styling
)
# Export Section
with gr.Row():
# export_btn = gr.Button("Export Tagged Images")
export_output = gr.JSON(label="Exported Tagged Images")
with gr.Row():
submit_btn = gr.Button("Process Images")
with gr.Row():
download_button_tflite = gr.File(
label="Download Tflite Model",
file_count="single",
interactive=False,
type="filepath"
)
with gr.Tab("Test Model"):
with gr.Row():
with gr.Column():
test_image = gr.Image(
label="Upload Image to Test",
type="numpy"
)
test_button = gr.Button("Test Image")
with gr.Column():
output_text = gr.Textbox(
label="Prediction Results",
lines=6,
interactive=False
)
test_button.click(
fn=test_model,
inputs=[test_image],
outputs=[output_text]
)
submit_btn.click(
fn=process_images,
inputs=[export_output],
outputs=[download_button_tflite]
)
# Add custom CSS for smaller gallery images
demo.load(js="""
function() {
const style = document.createElement('style');
style.textContent = `
.small-gallery img {
max-height: 150px !important;
width: auto !important;
object-fit: contain !important;
}
.small-gallery .grid-container {
gap: 10px !important;
}
`;
document.head.appendChild(style);
}
""")
# Functionality Connections
# Add both button click and Enter key press handlers
# add_tag_category_btn.click(
# add_tag_category,
# tag_category_input,
# [tag_category_status, image_upload, tag_category_input]
# ).then(
# get_tag_category_choices,
# None,
# tag_category_selector
# )
# Add Enter key press handler
tag_category_input.submit(
add_tag_category,
tag_category_input,
[tag_category_status, image_upload, tag_category_input]
).then(
get_tag_category_choices,
None,
tag_category_selector
)
tag_category_selector.change(
show_category_images,
tag_category_selector,
[image_gallery, image_upload]
)
upload_images_btn.click(
upload_images_for_tag,
[tag_category_selector, image_upload],
[tag_category_status, image_gallery, export_output]
)
clear_upload_btn.click(
clear_uploaded_images,
[],
[image_upload, image_gallery]
)
# export_btn.click(export_tagged_images, None, export_output)
# Launch the app
demo.launch()