Spaces:
Runtime error
Runtime error
revert to matplotlib
Browse files- psychohistory.py +72 -34
psychohistory.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
import
|
| 2 |
-
from mpl_toolkits.mplot3d import Axes3D
|
| 3 |
import networkx as nx
|
| 4 |
import numpy as np
|
| 5 |
import json
|
|
@@ -32,6 +32,8 @@ def generate_tree(current_x, current_y, depth, max_depth, max_nodes, x_range, G,
|
|
| 32 |
return node_count_per_depth
|
| 33 |
|
| 34 |
|
|
|
|
|
|
|
| 35 |
def build_graph_from_json(json_data, G):
|
| 36 |
"""Builds a graph from JSON data, handling subevents recursively."""
|
| 37 |
|
|
@@ -57,6 +59,7 @@ def build_graph_from_json(json_data, G):
|
|
| 57 |
add_event(None, event_data, 0) # Add each event as a root node
|
| 58 |
|
| 59 |
|
|
|
|
| 60 |
def find_paths(G):
|
| 61 |
"""Finds paths with highest/lowest probability and longest/shortest durations."""
|
| 62 |
best_path, worst_path = None, None
|
|
@@ -92,63 +95,98 @@ def find_paths(G):
|
|
| 92 |
|
| 93 |
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path
|
| 94 |
|
| 95 |
-
def
|
| 96 |
-
"""Draws
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
pos = nx.get_node_attributes(G, 'pos')
|
| 98 |
labels = nx.get_node_attributes(G, 'label')
|
| 99 |
|
| 100 |
if not pos:
|
| 101 |
print("Graph is empty. No nodes to visualize.")
|
| 102 |
-
return
|
| 103 |
|
| 104 |
x_vals, y_vals, z_vals = zip(*pos.values())
|
|
|
|
|
|
|
| 105 |
|
| 106 |
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in pos.values()]
|
| 107 |
-
|
| 108 |
-
marker=dict(size=10, color=node_colors, line=dict(width=1, color='black')),
|
| 109 |
-
text=list(labels.values()), textposition='top center', hoverinfo='text')
|
| 110 |
|
| 111 |
-
edge_traces = []
|
| 112 |
for edge in G.edges():
|
| 113 |
x_start, y_start, z_start = pos[edge[0]]
|
| 114 |
x_end, y_end, z_end = pos[edge[1]]
|
| 115 |
-
|
| 116 |
-
mode='lines', line=dict(width=2, color=highlight_color), hoverinfo='none')
|
| 117 |
-
edge_traces.append(edge_trace)
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
|
| 128 |
def main(json_data):
|
| 129 |
G = nx.DiGraph()
|
| 130 |
-
build_graph_from_json(json_data, G)
|
| 131 |
|
| 132 |
-
|
| 133 |
-
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G)
|
| 134 |
|
| 135 |
-
|
| 136 |
-
html_graph = draw_graph_plotly(G)
|
| 137 |
|
| 138 |
-
# Now you can use the path variables
|
| 139 |
if best_path:
|
| 140 |
-
|
| 141 |
-
|
| 142 |
if worst_path:
|
| 143 |
-
|
| 144 |
-
|
| 145 |
if longest_path:
|
| 146 |
-
|
| 147 |
-
|
| 148 |
if shortest_path:
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
return html_graph # Return the HTML string
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
from mpl_toolkits.mplot3d import Axes3D
|
| 3 |
import networkx as nx
|
| 4 |
import numpy as np
|
| 5 |
import json
|
|
|
|
| 32 |
return node_count_per_depth
|
| 33 |
|
| 34 |
|
| 35 |
+
|
| 36 |
+
|
| 37 |
def build_graph_from_json(json_data, G):
|
| 38 |
"""Builds a graph from JSON data, handling subevents recursively."""
|
| 39 |
|
|
|
|
| 59 |
add_event(None, event_data, 0) # Add each event as a root node
|
| 60 |
|
| 61 |
|
| 62 |
+
|
| 63 |
def find_paths(G):
|
| 64 |
"""Finds paths with highest/lowest probability and longest/shortest durations."""
|
| 65 |
best_path, worst_path = None, None
|
|
|
|
| 95 |
|
| 96 |
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path
|
| 97 |
|
| 98 |
+
def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
|
| 99 |
+
"""Draws a specific path in 3D."""
|
| 100 |
+
H = G.subgraph(path).copy()
|
| 101 |
+
pos = nx.get_node_attributes(G, 'pos')
|
| 102 |
+
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
|
| 103 |
+
|
| 104 |
+
fig = plt.figure(figsize=(16, 12))
|
| 105 |
+
ax = fig.add_subplot(111, projection='3d')
|
| 106 |
+
|
| 107 |
+
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in [pos[node] for node in path]]
|
| 108 |
+
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
| 109 |
+
|
| 110 |
+
for edge in H.edges():
|
| 111 |
+
x_start, y_start, z_start = pos[edge[0]]
|
| 112 |
+
x_end, y_end, z_end = pos[edge[1]]
|
| 113 |
+
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)
|
| 114 |
+
|
| 115 |
+
for node, (x, y, z) in pos.items():
|
| 116 |
+
if node in path:
|
| 117 |
+
ax.text(x, y, z, str(node), fontsize=12, color='black')
|
| 118 |
+
|
| 119 |
+
ax.set_xlabel('Time (weeks)')
|
| 120 |
+
ax.set_ylabel('Event Probability')
|
| 121 |
+
ax.set_zlabel('Event Number')
|
| 122 |
+
ax.set_title('3D Event Tree - Path')
|
| 123 |
+
|
| 124 |
+
plt.savefig(filename, bbox_inches='tight')
|
| 125 |
+
plt.close()
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def draw_global_tree_3d(G, filename='global_tree.png'):
|
| 129 |
+
"""Draws the entire graph in 3D."""
|
| 130 |
pos = nx.get_node_attributes(G, 'pos')
|
| 131 |
labels = nx.get_node_attributes(G, 'label')
|
| 132 |
|
| 133 |
if not pos:
|
| 134 |
print("Graph is empty. No nodes to visualize.")
|
| 135 |
+
return
|
| 136 |
|
| 137 |
x_vals, y_vals, z_vals = zip(*pos.values())
|
| 138 |
+
fig = plt.figure(figsize=(16, 12))
|
| 139 |
+
ax = fig.add_subplot(111, projection='3d')
|
| 140 |
|
| 141 |
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in pos.values()]
|
| 142 |
+
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
|
|
|
|
|
|
| 143 |
|
|
|
|
| 144 |
for edge in G.edges():
|
| 145 |
x_start, y_start, z_start = pos[edge[0]]
|
| 146 |
x_end, y_end, z_end = pos[edge[1]]
|
| 147 |
+
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
for node, (x, y, z) in pos.items():
|
| 150 |
+
label = labels.get(node, f"{node}")
|
| 151 |
+
ax.text(x, y, z, label, fontsize=12, color='black')
|
| 152 |
|
| 153 |
+
ax.set_xlabel('Time')
|
| 154 |
+
ax.set_ylabel('Probability')
|
| 155 |
+
ax.set_zlabel('Event Number')
|
| 156 |
+
ax.set_title('3D Event Tree')
|
| 157 |
+
|
| 158 |
+
plt.savefig(filename, bbox_inches='tight')
|
| 159 |
+
plt.close()
|
| 160 |
|
| 161 |
|
| 162 |
def main(json_data):
|
| 163 |
G = nx.DiGraph()
|
| 164 |
+
build_graph_from_json(json_data, G) # Build graph from the provided JSON data
|
| 165 |
|
| 166 |
+
draw_global_tree_3d(G, filename='global_tree.png')
|
|
|
|
| 167 |
|
| 168 |
+
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G)
|
|
|
|
| 169 |
|
|
|
|
| 170 |
if best_path:
|
| 171 |
+
print(f"\nPath with the highest average probability: {' -> '.join(map(str, best_path))}")
|
| 172 |
+
print(f"Average probability: {best_mean_prob:.2f}")
|
| 173 |
if worst_path:
|
| 174 |
+
print(f"\nPath with the lowest average probability: {' -> '.join(map(str, worst_path))}")
|
| 175 |
+
print(f"Average probability: {worst_mean_prob:.2f}")
|
| 176 |
if longest_path:
|
| 177 |
+
print(f"\nPath with the longest duration: {' -> '.join(map(str, longest_path))}")
|
| 178 |
+
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in longest_path) - min(G.nodes[node]['pos'][0] for node in longest_path):.2f}")
|
| 179 |
if shortest_path:
|
| 180 |
+
print(f"\nPath with the shortest duration: {' -> '.join(map(str, shortest_path))}")
|
| 181 |
+
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_path) - min(G.nodes[node]['pos'][0] for node in shortest_path):.2f}")
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
if best_path:
|
| 184 |
+
draw_path_3d(G, best_path, 'best_path.png', 'blue')
|
| 185 |
+
if worst_path:
|
| 186 |
+
draw_path_3d(G, worst_path, 'worst_path.png', 'red')
|
| 187 |
+
if longest_path:
|
| 188 |
+
draw_path_3d(G, longest_path, 'longest_duration_path.png', 'green')
|
| 189 |
+
if shortest_path:
|
| 190 |
+
draw_path_3d(G, shortest_path, 'shortest_duration_path.png', 'purple')
|
| 191 |
|
| 192 |
+
return 'global_tree.png' # Return the filename of the global tree
|