Spaces:
Running
Running
Update dataset link
Browse files* point to dataset space to download data;
* update sample questions
- cfg.py +15 -12
- embed_documents.py +9 -11
- gradio_app.py +1 -5
cfg.py
CHANGED
|
@@ -20,23 +20,26 @@ USERNAME = os.getenv("BUSTER_USERNAME")
|
|
| 20 |
PASSWORD = os.getenv("BUSTER_PASSWORD")
|
| 21 |
|
| 22 |
HUB_TOKEN = os.getenv("HUB_TOKEN")
|
| 23 |
-
REPO_ID = "
|
| 24 |
HUB_DB_FILE = "deeplake_store.zip"
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
token=HUB_TOKEN,
|
| 35 |
-
local_dir=".",
|
| 36 |
-
)
|
| 37 |
|
| 38 |
extract_zip(zip_file_path=HUB_DB_FILE, output_path="deeplake_store")
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
buster_cfg = BusterConfig(
|
| 42 |
validator_cfg={
|
|
|
|
| 20 |
PASSWORD = os.getenv("BUSTER_PASSWORD")
|
| 21 |
|
| 22 |
HUB_TOKEN = os.getenv("HUB_TOKEN")
|
| 23 |
+
REPO_ID = os.getenv("HF_DATASET")
|
| 24 |
HUB_DB_FILE = "deeplake_store.zip"
|
| 25 |
|
| 26 |
+
logger.info(f"Downloading {HUB_DB_FILE} from hub...")
|
| 27 |
+
hf_hub_download(
|
| 28 |
+
repo_id=REPO_ID,
|
| 29 |
+
repo_type="dataset",
|
| 30 |
+
filename=HUB_DB_FILE,
|
| 31 |
+
token=HUB_TOKEN,
|
| 32 |
+
local_dir=".",
|
| 33 |
+
)
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
extract_zip(zip_file_path=HUB_DB_FILE, output_path="deeplake_store")
|
| 36 |
|
| 37 |
+
example_questions = [
|
| 38 |
+
"What's the best way to get a job in AI?",
|
| 39 |
+
"What is prompt engineering?",
|
| 40 |
+
"What is generative AI?",
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
|
| 44 |
buster_cfg = BusterConfig(
|
| 45 |
validator_cfg={
|
embed_documents.py
CHANGED
|
@@ -1,23 +1,21 @@
|
|
| 1 |
import openai
|
| 2 |
import pandas as pd
|
| 3 |
-
from buster.
|
| 4 |
|
| 5 |
from utils import zip_contents
|
| 6 |
|
| 7 |
|
| 8 |
-
def read_csv(filename: str):
|
| 9 |
-
"""Assumes a pre-chunked csv file is provided with expected columns."""
|
| 10 |
-
df = pd.read_csv(filename)
|
| 11 |
-
for col in ["url", "source", "title", "content"]:
|
| 12 |
-
assert col in df.columns
|
| 13 |
-
return df
|
| 14 |
-
|
| 15 |
-
|
| 16 |
if __name__ == "__main__":
|
| 17 |
vector_store_path = "deeplake_store"
|
| 18 |
-
chunk_file = "data/
|
| 19 |
overwrite = True
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
dm = DeepLakeDocumentsManager(vector_store_path, overwrite=overwrite)
|
| 23 |
dm.add(df)
|
|
|
|
| 1 |
import openai
|
| 2 |
import pandas as pd
|
| 3 |
+
from buster.documents_manager import DeepLakeDocumentsManager
|
| 4 |
|
| 5 |
from utils import zip_contents
|
| 6 |
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
if __name__ == "__main__":
|
| 9 |
vector_store_path = "deeplake_store"
|
| 10 |
+
chunk_file = "data/output.csv"
|
| 11 |
overwrite = True
|
| 12 |
+
|
| 13 |
+
df = pd.read_csv(chunk_file)
|
| 14 |
+
|
| 15 |
+
# some pre-processing based on the latest file provided
|
| 16 |
+
df["url"] = df["source"]
|
| 17 |
+
df["source"] = "towardsai_blog"
|
| 18 |
+
df = df.dropna()
|
| 19 |
|
| 20 |
dm = DeepLakeDocumentsManager(vector_store_path, overwrite=overwrite)
|
| 21 |
dm.add(df)
|
gradio_app.py
CHANGED
|
@@ -90,11 +90,7 @@ with block:
|
|
| 90 |
submit = gr.Button(value="Send", variant="secondary")
|
| 91 |
|
| 92 |
examples = gr.Examples(
|
| 93 |
-
examples=
|
| 94 |
-
"What's a genetic algorithm?",
|
| 95 |
-
"What's PCA? What is it used for?",
|
| 96 |
-
"How do I deal with noisy data?",
|
| 97 |
-
],
|
| 98 |
inputs=question,
|
| 99 |
)
|
| 100 |
|
|
|
|
| 90 |
submit = gr.Button(value="Send", variant="secondary")
|
| 91 |
|
| 92 |
examples = gr.Examples(
|
| 93 |
+
examples=cfg.example_questions,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
inputs=question,
|
| 95 |
)
|
| 96 |
|