File size: 28,235 Bytes
00c29b3
6523110
 
 
 
 
 
 
 
 
 
06ceb44
 
 
 
 
 
 
 
 
 
 
6523110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f8062
 
 
 
 
 
 
6523110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00c29b3
6523110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00c29b3
6523110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00c29b3
6523110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00c29b3
6523110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
from src.use_llm import main_generate, get_embeddings

from src.questions_queries import *
import time
import uuid
import chromadb
import spacy
import numpy as np
import os
#os.environ["TOKENIZERS_PARALLELISM"] = "false"

import spacy

def get_nlp():
    try:
        return spacy.load("en_core_web_sm")
    except OSError:
        from spacy.cli import download
        download("en_core_web_sm")
        return spacy.load("en_core_web_sm")
nlp = get_nlp()

wikibase_properties_id = {'instance of': 'P2',
 'reference URL': 'P24',
 'start time': 'P15',
 'end time': 'P16',
 'occupation title': 'P25',
 'educated at': 'P9',
 'employer': 'P10',
 'work location': 'P7',
 'award received': 'P18',
 'point in time': 'P28',
 'exact match': 'P23',
 'date of birth': 'P3',
 'place of birth': 'P4',
 'date of death': 'P5',
 'country of citizenship': 'P6',
 'occupation': 'P19',
 'sex or gender': 'P8',
 'official website': 'P17',
 'perfumes': 'P27',
 'who wears it': 'P26',
 'inception': 'P11',
 'headquarters location': 'P12',
 'parent organization': 'P13',
 'founded by': 'P14',
 'owned by': 'P22',
 'industry': 'P20',
 'country': 'P30',
 'total revenue': 'P21',
 'designer employed': 'P29',
 'country of origin': 'P30',
 'fashion collection': 'P31',
 'fashion season': 'P32',
 'fashion show location': 'P33',
 'description of fashion collection': 'P34',
 'image of fashion collection': 'P35',
 'editor of fashion collection description': 'P36',
 'date of fashion collection': 'P37',
 'fashion show category': 'P38',
 'fashion house X fashion collection': 'P39'}

classes_wikibase = {'fashion designer': 'Q5',
 'fashion house': 'Q1',
 'business': 'Q9',
 'academic institution': 'Q2',
 'geographic location': 'Q4',
 'fashion award': 'Q8',
 'gender': 'Q6',
 'occupation': 'Q7',
 'human': 'Q36',
 'organization': 'Q3',
 'brand': 'Q38',
 'lifestyle brand': 'Q3417',
 'privately held company': 'Q1729',
 'fashion season': 'Q8199',
 'fashion show category': 'Q8200',
 'fashion season collection': 'Q8201',
 'fashion journalist': 'Q8207'}

questions_queries_all = [{ "question": education_most_popular_question, "query": education_most_popular_query},
                          { "question": how_many_designers_per_fashion_house_question, "query": how_many_designers_per_fashion_house_query},
                           {"question": how_many_directors_per_fashion_house_question, "query": how_many_directors_per_fashion_house_query}, 
                           {"question": designers_multiple_houses_question, "query":designers_multiple_houses_query }, 
                           {"question": award_question, "query": award_question},
                           {"question": fashion_houses_with_collections_question, "query": fashion_houses_with_collections_query},
                           {"question": popular_year_inception_question, "query": popular_year_inception_query},
                           {"question": longest_serving_director_question, "query": longest_serving_director_query},
                           {"question": houses_most_collections_question, "query": houses_most_collections_query},
                           {"question": collections_sustainability_theme_question, "query": collections_sustainability_theme_query},
                           {"question": collections_jeans_question, "query": collections_jeans_query},
                           {"question": creative_directors_school_question, "query": creative_directors_school_query}, 
                           {"question": fashion_houses_thematic_collection_question, "query": fashion_houses_thematic_collection_query},
                        #    {"question": fashion_house_directors_question.substitute({ "x": f"{"Chanel"}"}), "query": fashion_house_directors_query.substitute({ "x": f"'{"Chanel"}'"})},
                        #   { "question": designer_fashion_house_directors_question.substitute({ "x": f"{"Alexander McQueen"}"}), "query": designer_fashion_house_directors_query.substitute({ "x": f"'{"Alexander McQueen"}'"})},
                        #   {"question": country_designer_question.substitute({ "x": f"{"Italy"}"}), "query": country_designer_query.substitute({ "x": f"'{"Italy"}'"})},
                        #   {  "question": designer_order_fashion_collection_question.substitute({ "x": f"{"Alexander McQueen"}"}), "query": designer_order_fashion_collection_query.substitute({ "x": f"'{"Alexander McQueen"}'"})},
                        #   {"question": designer_fashion_director_question2.substitute({ "x": f"{"Alexander McQueen"}"}), "query": designer_fashion_director_query2.substitute({ "x": f"'{"Alexander McQueen"}'"})},
                        #   { "question": year_designers_birth_question.substitute({ "x": 1970}), "query": year_designers_birth_query.substitute({ "x": 1970})},
                        #   { "question": fashion_collection_images_question.substitute({ "x": f"{"Chanel"}"}), "query": fashion_collection_images_query.substitute({ "x": f"'{"Chanel"}'"})}
                           ]

if os.path.exists("web_app/query_log.json"):
    other_pairs = pd.read_json("web_app/query_log.json")
    other_pairs_success = other_pairs[(other_pairs["status"] == "Success") & (other_pairs["feedback"] == "good")]
    other_pairs_success = other_pairs_success[["question", "query"]]
    questions_queries_all = questions_queries_all + other_pairs_success.to_dict(orient='records')

    #print only the questions
    #print([q["question"] for q in questions_queries_all])
    
    



def mask_entities(text, nlp):
    doc = nlp(text)
    masked_text = text
    for ent in doc.ents:
        masked_text = masked_text.replace(ent.text, "[ENTITY]")
    return masked_text



import re
import spacy

def replace_entity(original_question, to_do_question, query):
    """
    Replaces entities in the query using entities from to_do_question while preserving quotation marks.
    Handles multiple entity replacements and numerical entity replacements.
    """
    nlp = spacy.load("en_core_web_sm")
    
    original_doc = nlp(original_question)
    to_do_doc = nlp(to_do_question)
    
    # Extract entities from both questions
    original_entities = [ent.text for ent in original_doc.ents]
    to_do_entities = [ent.text for ent in to_do_doc.ents]
    # print("Original Entities:", original_entities)
    # print("To-Do Entities:", to_do_entities)

    # Create entity mapping
    entity_mapping = {}

    for orig_ent, new_ent in zip(original_entities, to_do_entities):
        # Find numbers in each entity
        orig_numbers = re.findall(r"\d+", orig_ent)
        new_numbers = re.findall(r"\d+", new_ent)

        if orig_numbers and new_numbers and len(orig_numbers) == len(new_numbers):
            # If multiple numbers, replace each one
            for orig_num, new_num in zip(orig_numbers, new_numbers):
                entity_mapping[orig_num] = new_num
        else:
            # Otherwise, replace entire entity
            entity_mapping[orig_ent] = new_ent

    #print("Entity Mapping:", entity_mapping)

    # Replace entities in the query
    for orig, new in entity_mapping.items():
        query = re.sub(rf'("{orig}"|\b{re.escape(orig)}\b)', 
                       lambda match: f'"{new}"' if match.group(0).startswith('"') else new, 
                       query)

    return query


def capitalize_sentences(sentences):
    """
    Ensures that each sentence in a list starts with an uppercase letter.
    """
    capitalized_sentences = []
    
    for sentence in sentences:
        sentence = sentence.strip()  # Remove leading/trailing spaces
        if sentence:  # Check if the sentence is not empty
            sentence = sentence[0].upper() + sentence[1:]  # Capitalize first letter
        capitalized_sentences.append(sentence)
    
    return capitalized_sentences





def similarity_question(question, questions_queries_dictionary, collection, n_results=5, threshold=0.15):
    """
    Removes duplicate embeddings and retrieves similar questions.
    """
    nlp = spacy.load("en_core_web_sm")  # Load spaCy model for entity recognition
    
    original_documents = [questions_queries_dictionary[i]["question"] for i in range(len(questions_queries_dictionary))]
    masked_documents = [mask_entities(q, nlp) for q in original_documents]

    # Dictionary to store unique embeddings
    unique_embeddings = {}

    # Store each unique document in the vector embedding database
    for i, d in enumerate(masked_documents):
        response = get_embeddings(d)
        embedding = response["embeddings"][0]  # Extract the first (and only) embedding from the nested list
        
        # Check if embedding is unique
        is_duplicate = any(np.allclose(embedding, np.array(e), atol=1e-6) for e in unique_embeddings.values())
        if not is_duplicate:
            unique_embeddings[str(i)] = embedding  # Store unique embedding as a list
            
            collection.add(
                ids=[str(i)],
                embeddings=[embedding],  # Ensure this is a list of lists
                documents=[d]
            )
    
    # Compute the embedding for the input question
    masked_question = mask_entities(question, nlp)
    response = get_embeddings(d)
    query_embedding = response["embeddings"][0]  # Extract embedding

    results = collection.query(
        query_embeddings=[query_embedding],  # Ensure correct format
        n_results=n_results
    )

    triples = []
    for i in range(len(results['documents'][0])):
        masked_similar_question = results['documents'][0][i]
        distance = results['distances'][0][i]
        print(distance)
        paraphrase = distance < threshold
        
        # Find the corresponding original question
        index_similar_query = masked_documents.index(masked_similar_question)
        original_similar_question = original_documents[index_similar_query]
        similar_query = questions_queries_dictionary[index_similar_query]["query"]
        
        if paraphrase and "[ENTITY]" in masked_similar_question and "[ENTITY]" in masked_question:
            to_do_query = replace_entity(original_similar_question, question, similar_query)
        else:
            to_do_query = None
        
        triples.append((original_similar_question, similar_query, to_do_query))
    
    return triples


def similarity_question_no_masking(question, questions_queries_dictionary, collection, n_results=5, threshold=0.15):
    """
    Removes duplicate embeddings and retrieves similar questions.
    """
    
    original_documents = [questions_queries_dictionary[i]["question"] for i in range(len(questions_queries_dictionary))]
 

    # Dictionary to store unique embeddings
    unique_embeddings = {}

    # Store each unique document in the vector embedding database
    for i, d in enumerate(original_documents):
        response = get_embeddings(d)
        embedding = response["embeddings"][0]  # Extract the first (and only) embedding from the nested list
        
        # Check if embedding is unique
        is_duplicate = any(np.allclose(embedding, np.array(e), atol=1e-6) for e in unique_embeddings.values())
        if not is_duplicate:
            unique_embeddings[str(i)] = embedding  # Store unique embedding as a list
            
            collection.add(
                ids=[str(i)],
                embeddings=[embedding],  # Ensure this is a list of lists
                documents=[d]
            )
    
    # Compute the embedding for the input question
    
    response = get_embeddings(question)
    query_embedding = response["embeddings"][0]  # Extract embedding

    results = collection.query(
        query_embeddings=[query_embedding],  # Ensure correct format
        n_results=n_results
    )

    triples = []
    for i in range(len(results['documents'][0])):
        similar_question = results['documents'][0][i]
        distance = results['distances'][0][i]
        print(distance)
        paraphrase = distance < threshold
        
        # Find the corresponding original question
        index_similar_query = original_documents.index(similar_question)
        original_similar_question = original_documents[index_similar_query]
        similar_query = questions_queries_dictionary[index_similar_query]["query"]
        
        to_do_query = similar_query if paraphrase else None
        
        triples.append((original_similar_question, similar_query, to_do_query))
    
    return triples

def select_dict(dict, keys):
    return {k: dict[k] for k in keys if k in dict}

def prompt_template(to_do_question,triples_examples,wikibase_properties_id,how_many_examples = 1, ):

    questions = [triples_examples[i][0] for i in range(len(triples_examples))][:how_many_examples]
    print("EXAMPLE QUESTION(s): ",questions)

    classes_wikibase_selection = select_dict(classes_wikibase, ["fashion house", "fashion designer"])
    general_properties = select_dict(wikibase_properties_id, ["instance of", "reference URL", "start time", "end time", "occupation title", "point in time", "official website"])
    general_properties["rdfs:label"] = "rdfs:label"
    designer_properties = select_dict(wikibase_properties_id, ["employer", "educated at", "work location", "award received", "date of birth", "date of death", "place of birth",  "country of citizenship", "occupation", "sex or gender"])
    fashion_house_properties = select_dict(wikibase_properties_id, ["inception","headquarters location", "parent organization", "founded by","owned by", "industry", "country", "total revenue", "designer employed", "fashion collection", "description of fashion collection","image of fashion collection"])
    fashion_collection_properties = select_dict(wikibase_properties_id, ["fashion show category", "fashion show location", "fashion season"])
    qualifier_properties = select_dict(wikibase_properties_id, ["start time", "end time", "occupation title", "point in time","description of fashion collection","image of fashion collection"])
    
    prompt = f"""You are an expert in translating natural language questions into SPARQL queries for FashionDB - a knwoledge graph about Fashion.
    I provide you with the ontology of FashionDB. The properties are stored in a dictionary as property_label: property_id. The classes are stored in a dictionary as class_label: class_id.
    General Properties: {general_properties}, Fashion Designer Properties: {designer_properties}, Fashion House Properties: {fashion_house_properties}, Fashion Collection Properties: {fashion_collection_properties}. 
    In particular the following properties are always qualifiers thus their prefix is always pq: {qualifier_properties}.
    Classes: {classes_wikibase_selection}.
    Remember to use the entities presented in Natural language question to translate , when generating the corresponding SPARQL query.
    
    
    I provide you with example."""
    for i in range(len(questions)):
        prompt += f""" Example question: {triples_examples[i][0]}
                    Corresponding SPARQL query:{triples_examples[i][1]} """
    prompt += f""" Question to translate to SPARQL: {to_do_question}
    Remember that the use case is FASHION: if there is a mispelling of a fashion designer or house, you can adjust it according to your knowledge of fashion. Example: "balenciaho" should be "Balenciaga". 
                Your generated corresponding SPARQL query: """

    return prompt


def prompt_template_gemma2(to_do_question, triples_examples, wikibase_properties_id, how_many_examples=1):
    questions = [triples_examples[i][0] for i in range(len(triples_examples))][:how_many_examples]
    print("EXAMPLE QUESTION(s): ",questions)
    classes_wikibase_selection = select_dict(classes_wikibase, ["fashion house", "fashion designer"])
    general_properties = select_dict(wikibase_properties_id, ["instance of", "reference URL", "start time", "end time", "occupation title", "point in time", "official website"])
    general_properties["rdfs:label"] = "rdfs:label"
    designer_properties = select_dict(wikibase_properties_id, ["employer", "educated at", "work location", "award received", "date of birth", "date of death", "place of birth", "country of citizenship", "occupation", "sex or gender"])
    fashion_house_properties = select_dict(wikibase_properties_id, ["inception", "headquarters location", "parent organization", "founded by", "owned by", "industry", "country", "total revenue", "designer employed", "fashion collection", "description of fashion collection", "image of fashion collection"])
    fashion_collection_properties = select_dict(wikibase_properties_id, ["fashion show category", "fashion show location", "fashion season"])
    qualifier_properties = select_dict(wikibase_properties_id, ["start time", "end time", "occupation title", "point in time", "description of fashion collection", "image of fashion collection"])
    
    prompt = f"""
    You are an expert in translating natural language fashion-related questions into **SPARQL queries** for **FashionDB**, a knowledge graph about fashion.

    ---
    ## **FashionDB Ontology**
    - **Classes**: {classes_wikibase_selection}
    - **General Properties**: {general_properties}
    - **Fashion Designer Properties**: {designer_properties}
    - **Fashion House Properties**: {fashion_house_properties}
    - **Fashion Collection Properties**: {fashion_collection_properties}
    - **Qualifier Properties** (always prefixed with `pq:`): {qualifier_properties}

    ---
    ## **Instructions**
    - **Fix misspellings** of fashion brands and designers before generating the query.
        - Example: "Guxci" β†’ **"Gucci"**, "Balenciaho" β†’ **"Balenciaga"**.
    - If a brand or designer **isn't recognized**, **make a reasonable correction** based on common fashion knowledge.
    - Handle **abstract or conceptual fashion questions**, such as:
        - "Which fashion houses have had the most influence in the 20th century?"
        - "What are the key design trends in haute couture from the 1990s?"
    - **Always return a valid SPARQL query** using the provided ontology.

    ---
    ## **Example(s)**
    """
    
    for i in range(len(questions)):
        prompt += f"""
        **Example {i+1}**  
        - **Question**: {triples_examples[i][0]}  
        - **SPARQL Query**:  
        ```sparql
        {triples_examples[i][1]}
        ```
        """

    prompt += f"""
    ---
    ## **Your Task**
    **Question**: {to_do_question}

    **SPARQL Query:**  
    ```sparql
    """

    return prompt

def prompt_template_gpt4o_mini(to_do_question, triples_examples, wikibase_properties_id, how_many_examples=1):
    questions = [triples_examples[i][0] for i in range(len(triples_examples))][:how_many_examples]
    
    classes_wikibase_selection = select_dict(classes_wikibase, ["fashion house", "fashion designer"])
    general_properties = select_dict(wikibase_properties_id, ["instance of", "reference URL", "start time", "end time", "occupation title", "point in time", "official website"])
    general_properties["rdfs:label"] = "rdfs:label"
    designer_properties = select_dict(wikibase_properties_id, ["employer", "educated at", "work location", "award received", "date of birth", "date of death", "place of birth", "country of citizenship", "occupation", "sex or gender"])
    fashion_house_properties = select_dict(wikibase_properties_id, ["inception", "headquarters location", "parent organization", "founded by", "owned by", "industry", "country", "total revenue", "designer employed", "fashion collection", "description of fashion collection", "image of fashion collection"])
    fashion_collection_properties = select_dict(wikibase_properties_id, ["fashion show category", "fashion show location", "fashion season"])
    qualifier_properties = select_dict(wikibase_properties_id, ["start time", "end time", "occupation title", "point in time", "description of fashion collection", "image of fashion collection"])
    
    prompt = f"""
    You are a **SPARQL expert** specializing in **FashionDB**, a knowledge graph about fashion.

    ### **Your Task**
    - Translate the given **natural language question** into a **valid SPARQL query**.
    - **Fix spelling mistakes** of fashion brands and designers.
        - Example: "Guxci" β†’ "Gucci", "Balenciaho" β†’ "Balenciaga".
    - If a brand or designer isn't recognized, **guess the correct name** based on fashion industry knowledge.
    - Support **abstract fashion questions**, such as:
        - "How did Dior's designs evolve over the decades?"
        - "Which fashion houses had the biggest impact on 21st-century streetwear?"
    - Your **SPARQL query must use the correct ontology**.

    ---
    ### **FashionDB Ontology**
    - **Classes**: {classes_wikibase_selection}
    - **General Properties**: {general_properties}
    - **Fashion Designer Properties**: {designer_properties}
    - **Fashion House Properties**: {fashion_house_properties}
    - **Fashion Collection Properties**: {fashion_collection_properties}
    - **Qualifier Properties (always prefixed with `pq:`)**: {qualifier_properties}

    ---
    ### **Example(s)**
    """
    
    for i in range(len(questions)):
        prompt += f"""
        **Example {i+1}**  
        - **Question**: {triples_examples[i][0]}  
        - **SPARQL Query**:  
        ```sparql
        {triples_examples[i][1]}
        ```
        """

    prompt += f"""
    ---
    ### **Now Translate This Question**
    **Question**: {to_do_question}

    **SPARQL Query:**  
    ```sparql
    """

    return prompt



#validate
def replace_last_occurrence(s, pattern, replacement):
    pos = s.rfind(pattern)  # Find the last occurrence of the pattern
    if pos != -1:
        return s[:pos] + s[pos:].replace(pattern, replacement, 1)
        
def validation_query(sparql_query):
    if sparql_query.startswith("sparql"):
        sparql_query = sparql_query[6:]
    #if last character is \n remove it 
    while sparql_query[-1] == "\n" or sparql_query[-1] == " ":
        sparql_query = sparql_query[:-1]

    if sparql_query[-1] == ".":
        sparql_query = sparql_query[:-1]
    sparql_query = sparql_query.encode().decode('unicode_escape')
    sparql_query = sparql_query.replace("wdt", "wbt")
    if "SERVICE" not in sparql_query:
        sparql_query = replace_last_occurrence(sparql_query, "}", "SERVICE wikibase:label { bd:serviceParam wikibase:language 'en'. } \n }")
    
    return sparql_query


def safe_get_results(query, max_retries=3):
    """
    Safely executes a SPARQL query, handling HTTP errors gracefully.
    
    Parameters:
    - query (str): The SPARQL query to execute.
    - max_retries (int): Number of retries before failing.
    
    Returns:
    - DataFrame: Query results, or an empty DataFrame if the query fails.
    """
    for attempt in range(max_retries):
        try:
            return get_results_to_df(query)  # Attempt to execute the query
        except requests.exceptions.HTTPError as e:
            print(f"Attempt {attempt + 1}: Query failed with HTTPError {e}")
            time.sleep(2)  # Wait before retrying
        except Exception as e:
            print(f"Attempt {attempt + 1}: Unexpected error {e}")
            time.sleep(2)

    print("All attempts failed. Returning empty DataFrame.")
    return pd.DataFrame()  # Return empty DataFrame if all retries fail



def correction_question_prompt(to_do_question):
    correction_prompt = f"""
    You are an expert in **fashion brand and designer names**.
    Your task is to **correct misspellings** in the given question while keeping its original meaning.
    If you recognize a fashion-related name that is misspelled, **fix it**.
    If nothing is wrong, generate the Question to Correct.
    Don't generate **.

    ### **Examples**
    - "Who founded Guxci?" β†’ "Who founded Gucci?"
    - "What is balenciaho famous for?" β†’ "What is Balenciaga famous for?"
    - "Who is the head designer of gucxi?" β†’ "Who is the head designer of Gucci?"

    ### **Question to Correct**
    {to_do_question}

    ### **Corrected Version**
    """
    return correction_prompt

def initialize_collection():
    # Initialize ChromaDB client
    client = chromadb.Client()
    # If the collection already exists, delete it to start fresh.
    try:
        client.delete_collection(name="docs")  # Delete the existing collection
    except:
        pass  
    # Re-create the collection for each query
    collection = client.create_collection(name="docs")
    return collection




def main_generate_queries(to_do_question):
    
    # # Initialize ChromaDB client
    # client = chromadb.Client()
    # # If the collection already exists, delete it to start fresh.
    # try:
    #     client.delete_collection(name="docs")  # Delete the existing collection
    # except:
    #     pass  
    # # Re-create the collection for each query
    # collection = client.create_collection(name="docs")
    collection = initialize_collection()
    triples_examples = similarity_question(to_do_question, questions_queries_all, collection)
    if triples_examples[0][2] is not None:
        print("it's a paraphrase :)")
        sparql_query = triples_examples[0][2]
        print(triples_examples[0][0])
        result_query = safe_get_results(sparql_query)
        if result_query.empty:
            to_do_question = main_generate(correction_question_prompt(to_do_question), "gemma2", "You have to fix the mispellings of the Question to Correct")
            print(to_do_question)
            sparql_query = replace_entity(triples_examples[0][0], to_do_question, triples_examples[0][1])
            result_query = safe_get_results(sparql_query)
        print(sparql_query)
        if not result_query.empty:
            return result_query.to_dict(orient='records'), sparql_query

    prompt = prompt_template_gemma2(to_do_question, triples_examples, wikibase_properties_id, how_many_examples=1)

    sparql_query = main_generate(prompt, "gemma2", "You are a natural language to SPARQL language translator. Do only generate the SPARQL query, nothing else.")
    sparql_query = validation_query(sparql_query)
    result_query = safe_get_results(sparql_query)

    print(sparql_query)
    if result_query.empty:
        to_do_question = main_generate(correction_question_prompt(to_do_question), "gemma2", "You have to fix the mispellings of the Question to Correct")
        print(to_do_question)
        prompt = prompt_template_gemma2(to_do_question, triples_examples, wikibase_properties_id, how_many_examples=2)
        sparql_query = main_generate(prompt, "gemma2", "You are a natural language to SPARQL language translator. Do only generate the SPARQL query, nothing else.")
        sparql_query = validation_query(sparql_query)
        result_query = safe_get_results(sparql_query)
        if result_query.empty:
            new_collection = initialize_collection()
            triples_examples_no_masked = similarity_question_no_masking(to_do_question, questions_queries_all, new_collection)
            prompt = prompt_template_gemma2(to_do_question, triples_examples_no_masked, wikibase_properties_id, how_many_examples=2)
            sparql_query = main_generate(prompt, "gemma2", "You are a natural language to SPARQL language translator. Do only generate the SPARQL query, nothing else.")
            sparql_query = validation_query(sparql_query)
            result_query = safe_get_results(sparql_query)
            print(sparql_query)
            if result_query.empty:
                text_generated =  main_generate(to_do_question, "gemma2", "You are an expert in fashion. Just provide the answer to the question.")
                return text_generated, sparql_query

    print(sparql_query)
    print(result_query)
    
    return result_query.to_dict(orient='records'), sparql_query

# #main("What is the inception of Chanel?")
# if __name__ == "__main__":
#     #main("Which fashion designers being creative directors were born in Italy?")
#     #main_generate_queries("Which fashion houses had collections with jeans in their descriptions and how many of the collections have jeans?")
#     main_generate_queries("Which designers were born in 1970?")