traopia commited on
Commit
6fce99c
·
1 Parent(s): 743eef3
src/generate_queries_alternative.py CHANGED
@@ -201,7 +201,7 @@ def similarity_question(question, questions_queries_dictionary, collection, n_re
201
  # Store each unique document in the vector embedding database
202
  for i, d in enumerate(masked_documents):
203
  response = get_embeddings(d)
204
- embedding = response["embeddings"][0] # Extract the first (and only) embedding from the nested list
205
 
206
  # Check if embedding is unique
207
  is_duplicate = any(np.allclose(embedding, np.array(e), atol=1e-6) for e in unique_embeddings.values())
@@ -217,7 +217,7 @@ def similarity_question(question, questions_queries_dictionary, collection, n_re
217
  # Compute the embedding for the input question
218
  masked_question = mask_entities(question, nlp)
219
  response = get_embeddings(d)
220
- query_embedding = response["embeddings"][0] # Extract embedding
221
 
222
  results = collection.query(
223
  query_embeddings=[query_embedding], # Ensure correct format
@@ -260,7 +260,7 @@ def similarity_question_no_masking(question, questions_queries_dictionary, colle
260
  # Store each unique document in the vector embedding database
261
  for i, d in enumerate(original_documents):
262
  response = get_embeddings(d)
263
- embedding = response["embeddings"][0] # Extract the first (and only) embedding from the nested list
264
 
265
  # Check if embedding is unique
266
  is_duplicate = any(np.allclose(embedding, np.array(e), atol=1e-6) for e in unique_embeddings.values())
@@ -276,7 +276,7 @@ def similarity_question_no_masking(question, questions_queries_dictionary, colle
276
  # Compute the embedding for the input question
277
 
278
  response = get_embeddings(question)
279
- query_embedding = response["embeddings"][0] # Extract embedding
280
 
281
  results = collection.query(
282
  query_embeddings=[query_embedding], # Ensure correct format
 
201
  # Store each unique document in the vector embedding database
202
  for i, d in enumerate(masked_documents):
203
  response = get_embeddings(d)
204
+ embedding = response[0] # Extract the first (and only) embedding from the nested list
205
 
206
  # Check if embedding is unique
207
  is_duplicate = any(np.allclose(embedding, np.array(e), atol=1e-6) for e in unique_embeddings.values())
 
217
  # Compute the embedding for the input question
218
  masked_question = mask_entities(question, nlp)
219
  response = get_embeddings(d)
220
+ query_embedding = response[0] # Extract embedding
221
 
222
  results = collection.query(
223
  query_embeddings=[query_embedding], # Ensure correct format
 
260
  # Store each unique document in the vector embedding database
261
  for i, d in enumerate(original_documents):
262
  response = get_embeddings(d)
263
+ embedding = response[0] # Extract the first (and only) embedding from the nested list
264
 
265
  # Check if embedding is unique
266
  is_duplicate = any(np.allclose(embedding, np.array(e), atol=1e-6) for e in unique_embeddings.values())
 
276
  # Compute the embedding for the input question
277
 
278
  response = get_embeddings(question)
279
+ query_embedding = response[0] # Extract embedding
280
 
281
  results = collection.query(
282
  query_embeddings=[query_embedding], # Ensure correct format