Spaces:
Running
Running
traopia
commited on
Commit
·
85e469d
1
Parent(s):
9632b77
new app
Browse files- app.py +109 -113
- app_old.py +118 -0
- gradio_app1.py +110 -0
- search.py +22 -0
app.py
CHANGED
@@ -1,118 +1,114 @@
|
|
1 |
import gradio as gr
|
2 |
-
#example just for fun
|
3 |
-
from src.visual_qa import main_text_retrieve_images
|
4 |
-
from src.generate_queries_alternative import main_generate_queries
|
5 |
-
import time
|
6 |
import pandas as pd
|
7 |
-
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
if
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
if
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
if
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
print(records)
|
69 |
-
except Exception as e:
|
70 |
-
return [("https://via.placeholder.com/300x200?text=Error", f"Error: {e}")]
|
71 |
-
|
72 |
-
gallery_items = []
|
73 |
-
for item in records:
|
74 |
-
image_url = item.get("image_url")
|
75 |
-
if not image_url:
|
76 |
-
continue
|
77 |
-
# Build a simple caption from the remaining fields
|
78 |
-
caption = " | ".join(f"{k}: {v}" for k, v in item.items() if k != "image_url")
|
79 |
-
gallery_items.append((image_url, caption))
|
80 |
-
|
81 |
-
return gallery_items
|
82 |
-
|
83 |
-
# --- UI --- #
|
84 |
with gr.Blocks() as demo:
|
85 |
-
gr.Markdown("#
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
gr.
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from search import search_images_by_text, get_similar_images
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
import requests
|
9 |
+
from io import BytesIO
|
10 |
+
#@st.cache_data(show_spinner="Loading FashionDB...")
|
11 |
+
def load_data_hf():
|
12 |
+
# Load the Parquet file directly from Hugging Face
|
13 |
+
df_url = "https://huggingface.co/datasets/traopia/vogue_runway_small/resolve/main/VogueRunway.parquet"
|
14 |
+
df = pd.read_parquet(df_url)
|
15 |
+
|
16 |
+
# Load the .npy file using requests
|
17 |
+
npy_url = "https://huggingface.co/datasets/traopia/vogue_runway_small/resolve/main/VogueRunway_image.npy"
|
18 |
+
response = requests.get(npy_url)
|
19 |
+
response.raise_for_status() # Raise error if download fails
|
20 |
+
embeddings = np.load(BytesIO(response.content), mmap_mode="r")
|
21 |
+
|
22 |
+
return df, embeddings
|
23 |
+
|
24 |
+
df, embeddings = load_data_hf()
|
25 |
+
|
26 |
+
# Filter and search
|
27 |
+
def filter_and_search(fashion_house, category, season, year_range, query):
|
28 |
+
filtered = df.copy()
|
29 |
+
|
30 |
+
if fashion_house:
|
31 |
+
filtered = filtered[filtered['designer'].isin(fashion_house)]
|
32 |
+
if category:
|
33 |
+
filtered = filtered[filtered['category'].isin(category)]
|
34 |
+
if season:
|
35 |
+
filtered = filtered[filtered['season'].isin(season)]
|
36 |
+
filtered = filtered[(filtered['year'] >= year_range[0]) & (filtered['year'] <= year_range[1])]
|
37 |
+
|
38 |
+
if query:
|
39 |
+
results = search_images_by_text(query, filtered, embeddings)
|
40 |
+
else:
|
41 |
+
results = filtered.head(30)
|
42 |
+
|
43 |
+
image_urls = results["url"].tolist()
|
44 |
+
metadata = results.to_dict(orient="records")
|
45 |
+
return image_urls, metadata
|
46 |
+
|
47 |
+
# Display metadata and similar
|
48 |
+
def show_metadata(idx, metadata):
|
49 |
+
item = metadata[idx]
|
50 |
+
out = ""
|
51 |
+
for field in ["designer", "season", "year", "category"]:
|
52 |
+
if field in item and pd.notna(item[field]):
|
53 |
+
out += f"**{field.title()}**: {item[field]}\n"
|
54 |
+
if 'collection' in item and pd.notna(item['collection']):
|
55 |
+
out += f"\n[View Collection]({item['collection']})"
|
56 |
+
return out
|
57 |
+
|
58 |
+
def find_similar(idx, metadata):
|
59 |
+
key = metadata[idx]["key"]
|
60 |
+
similar_df = get_similar_images(df, key, embeddings, top_k=5)
|
61 |
+
return similar_df["url"].tolist(), similar_df.to_dict(orient="records")
|
62 |
+
|
63 |
+
# Gradio UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
with gr.Blocks() as demo:
|
65 |
+
gr.Markdown("# 👗 FashionDB Explorer")
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
fashion_house = gr.Dropdown(label="Fashion House", choices=sorted(df["designer"].dropna().unique()), multiselect=True)
|
69 |
+
category = gr.Dropdown(label="Category", choices=sorted(df["category"].dropna().unique()), multiselect=True)
|
70 |
+
season = gr.Dropdown(label="Season", choices=sorted(df["season"].dropna().unique()), multiselect=True)
|
71 |
+
year_range = gr.Slider(label="Year Range", minimum=int(df['year'].min()), maximum=int(df['year'].max()), value=(2000, 2025), step=1)
|
72 |
+
|
73 |
+
query = gr.Textbox(label="Search", placeholder="e.g., pink dress")
|
74 |
+
search_button = gr.Button("Search")
|
75 |
+
|
76 |
+
result_gallery = gr.Gallery(label="Search Results").style(grid=[5], height="auto")
|
77 |
+
metadata_output = gr.Markdown()
|
78 |
+
similar_gallery = gr.Gallery(label="Similar Images").style(grid=[5], height="auto")
|
79 |
+
|
80 |
+
metadata_state = gr.State([])
|
81 |
+
selected_idx = gr.Number(value=0, visible=False)
|
82 |
+
|
83 |
+
def handle_search(*args):
|
84 |
+
imgs, meta = filter_and_search(*args)
|
85 |
+
return imgs, meta, "", []
|
86 |
+
|
87 |
+
search_button.click(
|
88 |
+
handle_search,
|
89 |
+
inputs=[fashion_house, category, season, year_range, query],
|
90 |
+
outputs=[result_gallery, metadata_state, metadata_output, similar_gallery]
|
91 |
+
)
|
92 |
+
|
93 |
+
def handle_click(evt: gr.SelectData, metadata):
|
94 |
+
idx = evt.index
|
95 |
+
md = show_metadata(idx, metadata)
|
96 |
+
return idx, md
|
97 |
+
|
98 |
+
result_gallery.select(
|
99 |
+
handle_click,
|
100 |
+
inputs=[metadata_state],
|
101 |
+
outputs=[selected_idx, metadata_output]
|
102 |
+
)
|
103 |
+
|
104 |
+
def show_similar(idx, metadata):
|
105 |
+
return find_similar(int(idx), metadata)
|
106 |
+
|
107 |
+
show_similar_button = gr.Button("Show Similar Images")
|
108 |
+
show_similar_button.click(
|
109 |
+
show_similar,
|
110 |
+
inputs=[selected_idx, metadata_state],
|
111 |
+
outputs=[similar_gallery, metadata_state]
|
112 |
+
)
|
113 |
|
114 |
demo.launch()
|
app_old.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
#example just for fun
|
3 |
+
from src.visual_qa import main_text_retrieve_images
|
4 |
+
from src.generate_queries_alternative import main_generate_queries
|
5 |
+
import time
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
import spacy
|
9 |
+
|
10 |
+
# Try to load the model, and download it if missing
|
11 |
+
try:
|
12 |
+
nlp = spacy.load("en_core_web_sm")
|
13 |
+
except OSError:
|
14 |
+
from spacy.cli import download
|
15 |
+
download("en_core_web_sm")
|
16 |
+
nlp = spacy.load("en_core_web_sm")
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
def handle_structured_query(question, sort_by=""):
|
21 |
+
if not question:
|
22 |
+
return "Please ask something 🙂", pd.DataFrame(), []
|
23 |
+
|
24 |
+
try:
|
25 |
+
start = time.time()
|
26 |
+
result_query, sparql_query = main_generate_queries(question)
|
27 |
+
elapsed = round(time.time() - start, 2)
|
28 |
+
except Exception as e:
|
29 |
+
return f"⚠️ Query failed: {e}", pd.DataFrame(), []
|
30 |
+
|
31 |
+
if isinstance(result_query, str):
|
32 |
+
return result_query, pd.DataFrame(), []
|
33 |
+
|
34 |
+
if not result_query:
|
35 |
+
return f"No results for '{question}'. Try rephrasing. (⏱ {elapsed}s)", pd.DataFrame(), []
|
36 |
+
|
37 |
+
df = pd.DataFrame(result_query)
|
38 |
+
if sort_by and sort_by in df.columns:
|
39 |
+
df = df.sort_values(by=sort_by)
|
40 |
+
|
41 |
+
|
42 |
+
if "image_url" in df.columns:
|
43 |
+
columns_of_interest = ["image_url", "year","fashion_collectionLabel", "reference_URL"]
|
44 |
+
df = df[columns_of_interest]
|
45 |
+
# Create a gallery: each item is (image_url, metadata string)
|
46 |
+
gallery_items = []
|
47 |
+
for _, row in df.iterrows():
|
48 |
+
image_url = row.get("image_url")
|
49 |
+
if not image_url:
|
50 |
+
continue
|
51 |
+
# Caption from other fields
|
52 |
+
caption = " | ".join(f"{k}: {v}" for k, v in row.items() if k != "image_url" and pd.notnull(v))
|
53 |
+
gallery_items.append((image_url, caption))
|
54 |
+
return f"Query returned {len(gallery_items)} image(s) in {elapsed} seconds.", pd.DataFrame(), gallery_items
|
55 |
+
|
56 |
+
return f"Query returned a table with {len(df)} row(s) in {elapsed} seconds.", df, []
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
def handle_image_query(text):
|
62 |
+
if not text:
|
63 |
+
return []
|
64 |
+
|
65 |
+
try:
|
66 |
+
records = main_text_retrieve_images(text)
|
67 |
+
print(f"Retrieved {len(records)} records for query: {text}")
|
68 |
+
print(records)
|
69 |
+
except Exception as e:
|
70 |
+
return [("https://via.placeholder.com/300x200?text=Error", f"Error: {e}")]
|
71 |
+
|
72 |
+
gallery_items = []
|
73 |
+
for item in records:
|
74 |
+
image_url = item.get("image_url")
|
75 |
+
if not image_url:
|
76 |
+
continue
|
77 |
+
# Build a simple caption from the remaining fields
|
78 |
+
caption = " | ".join(f"{k}: {v}" for k, v in item.items() if k != "image_url")
|
79 |
+
gallery_items.append((image_url, caption))
|
80 |
+
|
81 |
+
return gallery_items
|
82 |
+
|
83 |
+
# --- UI --- #
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown("# 🧵 FashionDB Interface")
|
86 |
+
|
87 |
+
|
88 |
+
with gr.Tab("Structured Query"):
|
89 |
+
gr.Markdown("Ask FashionDB anything and view results with images + metadata.")
|
90 |
+
|
91 |
+
with gr.Row():
|
92 |
+
query_input = gr.Textbox(label="Your question")
|
93 |
+
sort_input = gr.Textbox(label="Sort by (optional column name)", placeholder="e.g. year")
|
94 |
+
|
95 |
+
query_submit = gr.Button("Submit")
|
96 |
+
|
97 |
+
query_text_output = gr.Textbox(label="Message", interactive=False)
|
98 |
+
query_table_output = gr.Dataframe(label="Tabular Result", interactive=False)
|
99 |
+
query_gallery_output = gr.Gallery(label="Image Gallery")
|
100 |
+
query_submit.click(
|
101 |
+
fn=handle_structured_query,
|
102 |
+
inputs=[query_input, sort_input],
|
103 |
+
outputs=[
|
104 |
+
query_text_output,
|
105 |
+
query_table_output,
|
106 |
+
query_gallery_output
|
107 |
+
]
|
108 |
+
)
|
109 |
+
|
110 |
+
with gr.Tab("Image Retrieval"):
|
111 |
+
gr.Markdown("Search for similar fashion show images based on a text description.")
|
112 |
+
image_text = gr.Textbox(label="Describe the kind of images you're looking for")
|
113 |
+
image_submit = gr.Button("Find Images")
|
114 |
+
image_gallery = gr.Gallery(label="Retrieved Images")
|
115 |
+
|
116 |
+
image_submit.click(handle_image_query, inputs=image_text, outputs=image_gallery)
|
117 |
+
|
118 |
+
demo.launch()
|
gradio_app1.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
# --- Handlers --- #
|
4 |
+
from src1.generate_queries_alternative import main_generate_queries
|
5 |
+
import time
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def handle_structured_query(question, sort_by=""):
|
12 |
+
if not question:
|
13 |
+
return "Please ask something 🙂", pd.DataFrame(), []
|
14 |
+
|
15 |
+
try:
|
16 |
+
start = time.time()
|
17 |
+
result_query, sparql_query = main_generate_queries(question)
|
18 |
+
elapsed = round(time.time() - start, 2)
|
19 |
+
except Exception as e:
|
20 |
+
return f"⚠️ Query failed: {e}", pd.DataFrame(), []
|
21 |
+
|
22 |
+
if isinstance(result_query, str):
|
23 |
+
return result_query, pd.DataFrame(), []
|
24 |
+
|
25 |
+
if not result_query:
|
26 |
+
return f"No results for '{question}'. Try rephrasing. (⏱ {elapsed}s)", pd.DataFrame(), []
|
27 |
+
|
28 |
+
df = pd.DataFrame(result_query)
|
29 |
+
if sort_by and sort_by in df.columns:
|
30 |
+
df = df.sort_values(by=sort_by)
|
31 |
+
|
32 |
+
|
33 |
+
if "image_url" in df.columns:
|
34 |
+
columns_of_interest = ["image_url", "year","fashion_collectionLabel", "reference_URL"]
|
35 |
+
df = df[columns_of_interest]
|
36 |
+
# Create a gallery: each item is (image_url, metadata string)
|
37 |
+
gallery_items = []
|
38 |
+
for _, row in df.iterrows():
|
39 |
+
image_url = row.get("image_url")
|
40 |
+
if not image_url:
|
41 |
+
continue
|
42 |
+
# Caption from other fields
|
43 |
+
caption = " | ".join(f"{k}: {v}" for k, v in row.items() if k != "image_url" and pd.notnull(v))
|
44 |
+
gallery_items.append((image_url, caption))
|
45 |
+
return f"Query returned {len(gallery_items)} image(s) in {elapsed} seconds.", pd.DataFrame(), gallery_items
|
46 |
+
|
47 |
+
return f"Query returned a table with {len(df)} row(s) in {elapsed} seconds.", df, []
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
from src1.visual_qa import main_text_retrieve_images
|
54 |
+
|
55 |
+
def handle_image_query(text):
|
56 |
+
if not text:
|
57 |
+
return []
|
58 |
+
|
59 |
+
try:
|
60 |
+
records = main_text_retrieve_images(text)
|
61 |
+
except Exception as e:
|
62 |
+
return [("https://via.placeholder.com/300x200?text=Error", f"Error: {e}")]
|
63 |
+
|
64 |
+
gallery_items = []
|
65 |
+
for item in records:
|
66 |
+
image_url = item.get("image_url")
|
67 |
+
if not image_url:
|
68 |
+
continue
|
69 |
+
# Build a simple caption from the remaining fields
|
70 |
+
caption = " | ".join(f"{k}: {v}" for k, v in item.items() if k != "image_url")
|
71 |
+
gallery_items.append((image_url, caption))
|
72 |
+
|
73 |
+
return gallery_items
|
74 |
+
|
75 |
+
# --- UI --- #
|
76 |
+
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("# 🧵 FashionDB Interface")
|
78 |
+
|
79 |
+
|
80 |
+
with gr.Tab("Structured Query"):
|
81 |
+
gr.Markdown("Ask FashionDB anything and view results with images + metadata.")
|
82 |
+
|
83 |
+
with gr.Row():
|
84 |
+
query_input = gr.Textbox(label="Your question")
|
85 |
+
sort_input = gr.Textbox(label="Sort by (optional column name)", placeholder="e.g. start_year")
|
86 |
+
|
87 |
+
query_submit = gr.Button("Submit")
|
88 |
+
|
89 |
+
query_text_output = gr.Textbox(label="Message", interactive=False)
|
90 |
+
query_table_output = gr.Dataframe(label="Tabular Result", interactive=False)
|
91 |
+
query_gallery_output = gr.Gallery(label="Image Gallery")
|
92 |
+
query_submit.click(
|
93 |
+
fn=handle_structured_query,
|
94 |
+
inputs=[query_input, sort_input],
|
95 |
+
outputs=[
|
96 |
+
query_text_output,
|
97 |
+
query_table_output,
|
98 |
+
query_gallery_output
|
99 |
+
]
|
100 |
+
)
|
101 |
+
|
102 |
+
with gr.Tab("Image Retrieval"):
|
103 |
+
gr.Markdown("Search for similar fashion show images based on a text description.")
|
104 |
+
image_text = gr.Textbox(label="Describe the kind of images you're looking for")
|
105 |
+
image_submit = gr.Button("Find Images")
|
106 |
+
image_gallery = gr.Gallery(label="Retrieved Images")
|
107 |
+
|
108 |
+
image_submit.click(handle_image_query, inputs=image_text, outputs=image_gallery)
|
109 |
+
|
110 |
+
demo.launch( share=True)
|
search.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Use a compatible CLIP model
|
6 |
+
model = SentenceTransformer("clip-ViT-B-32")
|
7 |
+
|
8 |
+
def search_images_by_text(text, df, embeddings, top_k=30):
|
9 |
+
text_emb = model.encode([text])
|
10 |
+
filtered_embeddings = embeddings[df.index]
|
11 |
+
sims = cosine_similarity(text_emb, filtered_embeddings)[0]
|
12 |
+
top_indices = np.argsort(sims)[::-1][:top_k]
|
13 |
+
return df.iloc[top_indices]
|
14 |
+
|
15 |
+
def get_similar_images(df, image_id, embeddings, top_k=5):
|
16 |
+
index = int(image_id) # adjust based on your ID setup
|
17 |
+
query_emb = embeddings[index]
|
18 |
+
sims = cosine_similarity([query_emb], embeddings)[0]
|
19 |
+
top_indices = np.argsort(sims)[::-1][1:top_k+1]
|
20 |
+
return df.iloc[top_indices]
|
21 |
+
|
22 |
+
|