# from huggingface_hub import InferenceClient # import os # # Use a Hugging Face inference endpoint like "google/gemma-1.1-7b-it" # # You must have access to this model (either public or via token) # HUGGINGFACE_API_TOKEN = os.getenv("HF_TOKEN") # Add this in your HF Space's secret settings # DEFAULT_MODEL = "google/gemma-1.1-7b-it" # client = InferenceClient(DEFAULT_MODEL, token=HUGGINGFACE_API_TOKEN) # def send_chat_prompt(prompt: str, model: str, system_prompt: str) -> str: # full_prompt = f"<|start_of_turn|>system\n{system_prompt}<|end_of_turn|>\n" \ # f"<|start_of_turn|>user\n{prompt}<|end_of_turn|>\n" \ # f"<|start_of_turn|>assistant\n" # response = client.text_generation( # prompt=full_prompt, # max_new_tokens=500, # temperature=0.5, # stop_sequences=["<|end_of_turn|>"] # ) # return response.strip() # def main_generate(prompt, model=DEFAULT_MODEL, system_prompt="You are a helpful assistant that generates SPARQL queries."): # response = send_chat_prompt(prompt, model, system_prompt) # response = response.replace('```', '').replace('json', '').strip() # return response # from sentence_transformers import SentenceTransformer # model = SentenceTransformer("thenlper/gte-large") # downloaded from Hugging Face # def get_embeddings(texts): # if isinstance(texts, str): # texts = [texts] # embeddings = model.encode(texts, convert_to_numpy=True) # return embeddings import ollama import openai def get_embeddings(texts): response = ollama.embed(model="mxbai-embed-large", input=texts) embeddings = response["embeddings"] return embeddings openai_api_key = "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" #generate def send_chat_prompt(prompt, model, system_prompt ): client = openai.OpenAI( base_url="http://localhost:11434/v1" if not "gpt" in model else None, api_key= "ollama" if not "gpt" in model else openai_api_key) resp = client.chat.completions.create( model=model, temperature = 0.5 , messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}]) response = resp.choices[0].message.content return response def main_generate(prompt,model, system_prompt): response = send_chat_prompt(prompt,model, system_prompt) response = response.replace('```','').replace('json','') #print(f" {model} Response:", response) return response