Update src/streamlit_app.py
Browse files- src/streamlit_app.py +824 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,826 @@
|
|
1 |
-
import
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
import io
|
|
|
|
|
2 |
import streamlit as st
|
3 |
+
import requests
|
4 |
+
import time
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
import glob
|
8 |
+
import base64
|
9 |
+
import pandas as pd
|
10 |
+
from datetime import datetime
|
11 |
+
|
12 |
+
# Configure page
|
13 |
+
st.set_page_config(
|
14 |
+
page_title="PDF Parser - Table Extraction Tool",
|
15 |
+
page_icon="π",
|
16 |
+
layout="wide",
|
17 |
+
initial_sidebar_state="collapsed"
|
18 |
+
)
|
19 |
+
|
20 |
+
# Custom CSS for styling - Grey and White Theme
|
21 |
+
st.markdown("""
|
22 |
+
<style>
|
23 |
+
.main-header {
|
24 |
+
text-align: center;
|
25 |
+
padding: 2rem 0;
|
26 |
+
background: linear-gradient(135deg, #6c757d 0%, #495057 100%);
|
27 |
+
border-radius: 10px;
|
28 |
+
margin-bottom: 2rem;
|
29 |
+
color: white;
|
30 |
+
}
|
31 |
+
|
32 |
+
.feature-card {
|
33 |
+
background: #f8f9fa;
|
34 |
+
padding: 1.5rem;
|
35 |
+
border-radius: 10px;
|
36 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
37 |
+
text-align: center;
|
38 |
+
margin: 1rem 0;
|
39 |
+
border: 1px solid #dee2e6;
|
40 |
+
}
|
41 |
+
|
42 |
+
.demo-button {
|
43 |
+
background: linear-gradient(45deg, #6c757d, #495057);
|
44 |
+
color: white;
|
45 |
+
border: none;
|
46 |
+
padding: 12px 24px;
|
47 |
+
border-radius: 25px;
|
48 |
+
font-weight: bold;
|
49 |
+
cursor: pointer;
|
50 |
+
margin: 10px;
|
51 |
+
}
|
52 |
+
|
53 |
+
.upload-button {
|
54 |
+
background: #495057;
|
55 |
+
color: white;
|
56 |
+
border: none;
|
57 |
+
padding: 12px 24px;
|
58 |
+
border-radius: 25px;
|
59 |
+
font-weight: bold;
|
60 |
+
cursor: pointer;
|
61 |
+
margin: 10px;
|
62 |
+
}
|
63 |
+
|
64 |
+
.success-message {
|
65 |
+
background: #f8f9fa;
|
66 |
+
color: #495057;
|
67 |
+
padding: 15px;
|
68 |
+
border-radius: 5px;
|
69 |
+
border-left: 4px solid #6c757d;
|
70 |
+
margin: 20px 0;
|
71 |
+
}
|
72 |
+
|
73 |
+
.processing-message {
|
74 |
+
background: #f8f9fa;
|
75 |
+
color: #495057;
|
76 |
+
padding: 15px;
|
77 |
+
border-radius: 5px;
|
78 |
+
border-left: 4px solid #adb5bd;
|
79 |
+
margin: 20px 0;
|
80 |
+
}
|
81 |
+
|
82 |
+
.method-tab {
|
83 |
+
background: #f8f9fa;
|
84 |
+
padding: 10px 15px;
|
85 |
+
border-radius: 5px;
|
86 |
+
margin: 5px;
|
87 |
+
cursor: pointer;
|
88 |
+
border: 2px solid #dee2e6;
|
89 |
+
}
|
90 |
+
|
91 |
+
.method-tab-active {
|
92 |
+
background: #6c757d;
|
93 |
+
color: white;
|
94 |
+
border: 2px solid #495057;
|
95 |
+
}
|
96 |
+
|
97 |
+
.html-file-card {
|
98 |
+
background: #f8f9fa;
|
99 |
+
padding: 15px;
|
100 |
+
border-radius: 8px;
|
101 |
+
margin: 10px 0;
|
102 |
+
border-left: 4px solid #6c757d;
|
103 |
+
}
|
104 |
+
|
105 |
+
.file-info-card {
|
106 |
+
background: #f8f9fa;
|
107 |
+
padding: 12px;
|
108 |
+
border-radius: 8px;
|
109 |
+
margin: 5px 0;
|
110 |
+
border-left: 4px solid #6c757d;
|
111 |
+
font-size: 0.9em;
|
112 |
+
}
|
113 |
+
|
114 |
+
.file-stats {
|
115 |
+
color: #6c757d;
|
116 |
+
font-size: 0.85em;
|
117 |
+
margin-top: 5px;
|
118 |
+
}
|
119 |
+
|
120 |
+
.stSelectbox > div > div {
|
121 |
+
background-color: #f8f9fa;
|
122 |
+
}
|
123 |
+
|
124 |
+
.hidden-text {
|
125 |
+
color: #adb5bd;
|
126 |
+
font-style: italic;
|
127 |
+
}
|
128 |
+
|
129 |
+
.table-container {
|
130 |
+
max-height: 400px;
|
131 |
+
overflow-y: auto;
|
132 |
+
border: 1px solid #dee2e6;
|
133 |
+
border-radius: 5px;
|
134 |
+
padding: 10px;
|
135 |
+
margin: 10px 0;
|
136 |
+
background-color: white;
|
137 |
+
}
|
138 |
+
|
139 |
+
.table-header {
|
140 |
+
background: #f8f9fa;
|
141 |
+
padding: 10px;
|
142 |
+
border-radius: 5px;
|
143 |
+
margin-bottom: 10px;
|
144 |
+
border-left: 4px solid #6c757d;
|
145 |
+
}
|
146 |
+
|
147 |
+
/* Override Streamlit button styles */
|
148 |
+
.stButton > button {
|
149 |
+
background-color: #6c757d !important;
|
150 |
+
color: white !important;
|
151 |
+
border: 1px solid #495057 !important;
|
152 |
+
border-radius: 5px !important;
|
153 |
+
}
|
154 |
+
|
155 |
+
.stButton > button:hover {
|
156 |
+
background-color: #495057 !important;
|
157 |
+
border-color: #343a40 !important;
|
158 |
+
}
|
159 |
+
|
160 |
+
/* Override primary button styles */
|
161 |
+
.stButton > button[kind="primary"] {
|
162 |
+
background-color: #495057 !important;
|
163 |
+
color: white !important;
|
164 |
+
border: 1px solid #343a40 !important;
|
165 |
+
}
|
166 |
+
|
167 |
+
.stButton > button[kind="primary"]:hover {
|
168 |
+
background-color: #343a40 !important;
|
169 |
+
}
|
170 |
+
|
171 |
+
/* Style checkboxes */
|
172 |
+
.stCheckbox > label {
|
173 |
+
color: #495057 !important;
|
174 |
+
}
|
175 |
+
|
176 |
+
/* Style text inputs */
|
177 |
+
.stTextInput > div > div > input {
|
178 |
+
background-color: #f8f9fa !important;
|
179 |
+
border-color: #dee2e6 !important;
|
180 |
+
}
|
181 |
+
|
182 |
+
/* Style file uploader */
|
183 |
+
.stFileUploader > div {
|
184 |
+
background-color: #f8f9fa !important;
|
185 |
+
border-color: #dee2e6 !important;
|
186 |
+
}
|
187 |
+
|
188 |
+
/* Style dataframes */
|
189 |
+
.stDataFrame {
|
190 |
+
background-color: white !important;
|
191 |
+
border: 1px solid #dee2e6 !important;
|
192 |
+
}
|
193 |
+
|
194 |
+
/* Style selectbox */
|
195 |
+
.stSelectbox > div > div {
|
196 |
+
background-color: #f8f9fa !important;
|
197 |
+
border-color: #dee2e6 !important;
|
198 |
+
}
|
199 |
+
|
200 |
+
/* Style progress bar */
|
201 |
+
.stProgress > div > div > div {
|
202 |
+
background-color: #6c757d !important;
|
203 |
+
}
|
204 |
+
</style>
|
205 |
+
""", unsafe_allow_html=True)
|
206 |
+
|
207 |
+
# Initialize session state
|
208 |
+
if 'page' not in st.session_state:
|
209 |
+
st.session_state.page = 'home'
|
210 |
+
if 'processing' not in st.session_state:
|
211 |
+
st.session_state.processing = False
|
212 |
+
if 'results' not in st.session_state:
|
213 |
+
st.session_state.results = None
|
214 |
+
if 'show_output_dir' not in st.session_state:
|
215 |
+
st.session_state.show_output_dir = False
|
216 |
+
if 'selected_method' not in st.session_state:
|
217 |
+
st.session_state.selected_method = None
|
218 |
+
if 'demo_results' not in st.session_state:
|
219 |
+
st.session_state.demo_results = None
|
220 |
+
if 'demo_selected_methods' not in st.session_state:
|
221 |
+
st.session_state.demo_selected_methods = {'docling': True, 'llamaparse': False, 'unstructured': False}
|
222 |
+
|
223 |
+
# Tesla demo document path (adjust as needed)
|
224 |
+
TESLA_DOC_PATH = r"C:\Users\Areej\Desktop\get-tables-fastapi\tesla_docs_28-41 (1)-9-14.pdf"
|
225 |
+
OUTPUT_BASE_PATH = r"C:\Users\Areej\Desktop\get-tables-fastapi\output"
|
226 |
+
|
227 |
+
def show_home_page():
|
228 |
+
# Header
|
229 |
+
st.markdown("""
|
230 |
+
<div class="main-header">
|
231 |
+
<h1 style="font-size: 3rem; margin: 0; color: #f8f9fa;">Transform PDF Tables to</h1>
|
232 |
+
<h1 style="font-size: 3rem; margin: 0; color: #ffffff;">HTML and Excel</h1>
|
233 |
+
<p style="margin-top: 1rem; font-size: 1.2rem; opacity: 0.9;">Powered by Traversaal.ai</p>
|
234 |
+
<p style="margin-top: 0.5rem; opacity: 0.8;">Perfect for financial reports, research papers, and data analysis.</p>
|
235 |
+
</div>
|
236 |
+
""", unsafe_allow_html=True)
|
237 |
+
|
238 |
+
# Main buttons
|
239 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
240 |
+
with col2:
|
241 |
+
col_btn1, col_btn2 = st.columns(2)
|
242 |
+
with col_btn1:
|
243 |
+
if st.button("π Upload PDF Document", key="upload_btn", help="Upload your own PDF document"):
|
244 |
+
st.session_state.page = 'upload'
|
245 |
+
st.rerun()
|
246 |
+
|
247 |
+
with col_btn2:
|
248 |
+
if st.button("β‘ Try Tesla 10K Demo", key="demo_btn", help="Try with Tesla's 10K form"):
|
249 |
+
st.session_state.page = 'demo_setup'
|
250 |
+
st.rerun()
|
251 |
+
|
252 |
+
# Features section
|
253 |
+
st.markdown("---")
|
254 |
+
col1, col2, col3 = st.columns(3)
|
255 |
+
|
256 |
+
with col1:
|
257 |
+
st.markdown("""
|
258 |
+
<div class="feature-card">
|
259 |
+
<h3 style="color: #495057;">β‘ Lightning Fast</h3>
|
260 |
+
<p style="color: #6c757d;">Process complex PDFs in seconds with our advanced AI algorithms</p>
|
261 |
+
</div>
|
262 |
+
""", unsafe_allow_html=True)
|
263 |
+
|
264 |
+
with col2:
|
265 |
+
st.markdown("""
|
266 |
+
<div class="feature-card">
|
267 |
+
<h3 style="color: #495057;">π Secure & Private</h3>
|
268 |
+
<p style="color: #6c757d;">Your documents are processed securely and never stored permanently</p>
|
269 |
+
</div>
|
270 |
+
""", unsafe_allow_html=True)
|
271 |
+
|
272 |
+
with col3:
|
273 |
+
st.markdown("""
|
274 |
+
<div class="feature-card">
|
275 |
+
<h3 style="color: #495057;">π Batch Processing</h3>
|
276 |
+
<p style="color: #6c757d;">Handle multiple documents and tables simultaneously</p>
|
277 |
+
</div>
|
278 |
+
""", unsafe_allow_html=True)
|
279 |
+
|
280 |
+
def show_upload_page():
|
281 |
+
st.markdown("## π Upload Your Document")
|
282 |
+
|
283 |
+
# File upload
|
284 |
+
uploaded_file = st.file_uploader(
|
285 |
+
"Choose a PDF file",
|
286 |
+
type=['pdf'],
|
287 |
+
help="Upload a PDF document to extract tables from"
|
288 |
+
)
|
289 |
+
|
290 |
+
# Input file path (alternative)
|
291 |
+
st.markdown("**Or specify file path:**")
|
292 |
+
input_file_path = st.text_input(
|
293 |
+
"Input File Path",
|
294 |
+
placeholder="C:\\path\\to\\your\\document.pdf",
|
295 |
+
help="Enter the full path to your PDF file"
|
296 |
+
)
|
297 |
+
|
298 |
+
# Output directory with show/hide functionality
|
299 |
+
output_dir = st.text_input(
|
300 |
+
"Output Directory",
|
301 |
+
placeholder="C:\\path\\to\\output\\folder",
|
302 |
+
help="Directory where extracted tables will be saved",
|
303 |
+
type="password" if not st.session_state.show_output_dir else "default"
|
304 |
+
)
|
305 |
+
|
306 |
+
# Show/Hide output directory toggle
|
307 |
+
col1, col2 = st.columns([3, 1])
|
308 |
+
with col2:
|
309 |
+
if st.button("ποΈ View/Hide Path"):
|
310 |
+
st.session_state.show_output_dir = not st.session_state.show_output_dir
|
311 |
+
st.rerun()
|
312 |
+
|
313 |
+
# Extraction method selection
|
314 |
+
st.markdown("### π§ Select Extraction Methods")
|
315 |
+
col1, col2, col3 = st.columns(3)
|
316 |
+
|
317 |
+
with col1:
|
318 |
+
docling = st.checkbox("Docling", value=True, help="Advanced document processing")
|
319 |
+
with col2:
|
320 |
+
llamaparse = st.checkbox("LlamaParse", value=False, help="AI-powered parsing")
|
321 |
+
with col3:
|
322 |
+
unstructured = st.checkbox("Unstructured", value=False, help="General purpose extraction")
|
323 |
+
|
324 |
+
# Process button
|
325 |
+
if st.button("π Process Document", type="primary"):
|
326 |
+
if (uploaded_file or input_file_path) and output_dir and (docling or llamaparse or unstructured):
|
327 |
+
file_path = input_file_path if input_file_path else uploaded_file.name
|
328 |
+
process_document(file_path, output_dir, docling, llamaparse, unstructured)
|
329 |
+
else:
|
330 |
+
st.error("Please provide input file, output directory, and select at least one extraction method.")
|
331 |
+
|
332 |
+
# Back button
|
333 |
+
if st.button("β Back to Home"):
|
334 |
+
st.session_state.page = 'home'
|
335 |
+
st.rerun()
|
336 |
+
|
337 |
+
def show_demo_setup_page():
|
338 |
+
st.markdown("## β‘ Tesla 10K Demo Setup")
|
339 |
+
st.markdown("*Configure extraction methods for Tesla's 10K document processing*")
|
340 |
+
|
341 |
+
# Document info
|
342 |
+
st.markdown("### π Document Information")
|
343 |
+
st.info("**Document:** tesla_docs_28-41 (1)-9-14.pdf")
|
344 |
+
|
345 |
+
# Extraction method selection (removed output directory section completely)
|
346 |
+
st.markdown("### π§ Select Extraction Methods")
|
347 |
+
col1, col2, col3 = st.columns(3)
|
348 |
+
|
349 |
+
with col1:
|
350 |
+
docling = st.checkbox("Docling",
|
351 |
+
value=st.session_state.demo_selected_methods['docling'],
|
352 |
+
help="Advanced document processing")
|
353 |
+
with col2:
|
354 |
+
llamaparse = st.checkbox("LlamaParse",
|
355 |
+
value=st.session_state.demo_selected_methods['llamaparse'],
|
356 |
+
help="AI-powered parsing")
|
357 |
+
with col3:
|
358 |
+
unstructured = st.checkbox("Unstructured",
|
359 |
+
value=st.session_state.demo_selected_methods['unstructured'],
|
360 |
+
help="General purpose extraction")
|
361 |
+
|
362 |
+
# Update session state
|
363 |
+
st.session_state.demo_selected_methods = {
|
364 |
+
'docling': docling,
|
365 |
+
'llamaparse': llamaparse,
|
366 |
+
'unstructured': unstructured
|
367 |
+
}
|
368 |
+
|
369 |
+
# Process button
|
370 |
+
col1, col2 = st.columns([2, 1])
|
371 |
+
with col1:
|
372 |
+
if st.button("π Process Tesla Document", type="primary"):
|
373 |
+
if docling or llamaparse or unstructured:
|
374 |
+
st.session_state.page = 'demo'
|
375 |
+
st.session_state.processing = True
|
376 |
+
st.rerun()
|
377 |
+
else:
|
378 |
+
st.error("Please select at least one extraction method.")
|
379 |
+
|
380 |
+
with col2:
|
381 |
+
if st.button("β Back to Home"):
|
382 |
+
st.session_state.page = 'home'
|
383 |
+
st.rerun()
|
384 |
+
|
385 |
+
def show_demo_page():
|
386 |
+
if st.session_state.processing:
|
387 |
+
show_processing_demo()
|
388 |
+
else:
|
389 |
+
show_demo_results()
|
390 |
+
|
391 |
+
def show_processing_demo():
|
392 |
+
st.markdown("## β‘ Processing Tesla 10K Document...")
|
393 |
+
|
394 |
+
# Show selected methods
|
395 |
+
selected_methods = [method for method, selected in st.session_state.demo_selected_methods.items() if selected]
|
396 |
+
st.markdown(f"*Processing with selected methods: {', '.join([m.title() for m in selected_methods])}*")
|
397 |
+
|
398 |
+
# Progress bar
|
399 |
+
progress_bar = st.progress(0)
|
400 |
+
status_text = st.empty()
|
401 |
+
method_status = st.empty()
|
402 |
+
|
403 |
+
# Calculate total steps based on selected methods
|
404 |
+
total_methods = len(selected_methods)
|
405 |
+
steps_per_method = 30
|
406 |
+
total_steps = total_methods * steps_per_method
|
407 |
+
|
408 |
+
current_method_index = 0
|
409 |
+
for i in range(total_steps):
|
410 |
+
progress = (i + 1) / total_steps
|
411 |
+
progress_bar.progress(progress)
|
412 |
+
|
413 |
+
# Determine current method
|
414 |
+
method_step = i % steps_per_method
|
415 |
+
if method_step == 0 and i > 0:
|
416 |
+
current_method_index += 1
|
417 |
+
|
418 |
+
current_method = selected_methods[current_method_index]
|
419 |
+
method_progress = (method_step + 1) / steps_per_method
|
420 |
+
|
421 |
+
# Update status messages
|
422 |
+
if method_progress < 0.3:
|
423 |
+
status_text.text(f"π {current_method.title()}: Reading document... {int(method_progress * 100)}%")
|
424 |
+
elif method_progress < 0.7:
|
425 |
+
status_text.text(f"π {current_method.title()}: Extracting tables... {int(method_progress * 100)}%")
|
426 |
+
else:
|
427 |
+
status_text.text(f"πΎ {current_method.title()}: Generating HTML outputs... {int(method_progress * 100)}%")
|
428 |
+
|
429 |
+
method_status.markdown(f"**Overall Progress:** {int(progress * 100)}% | **Current Method:** {current_method.title()}")
|
430 |
+
|
431 |
+
time.sleep(0.33)
|
432 |
+
|
433 |
+
# Show completion
|
434 |
+
st.markdown("""
|
435 |
+
<div class="success-message">
|
436 |
+
β
<strong>Document processed successfully!</strong><br>
|
437 |
+
Tables have been extracted using selected methods and HTML files are ready for viewing.
|
438 |
+
</div>
|
439 |
+
""", unsafe_allow_html=True)
|
440 |
+
|
441 |
+
# Process Tesla demo
|
442 |
+
process_tesla_demo()
|
443 |
+
|
444 |
+
st.session_state.processing = False
|
445 |
+
time.sleep(2)
|
446 |
+
st.rerun()
|
447 |
+
|
448 |
+
def process_tesla_demo():
|
449 |
+
"""Process Tesla demo document using selected extraction methods"""
|
450 |
+
try:
|
451 |
+
# Create output directory for demo (using the base path)
|
452 |
+
demo_output_dir = os.path.join(OUTPUT_BASE_PATH, "tesla_demo")
|
453 |
+
|
454 |
+
# Prepare the request data for selected methods only
|
455 |
+
data = {
|
456 |
+
'input_file_path': TESLA_DOC_PATH,
|
457 |
+
'output_dir': demo_output_dir,
|
458 |
+
'docling': st.session_state.demo_selected_methods['docling'],
|
459 |
+
'llamaparse': st.session_state.demo_selected_methods['llamaparse'],
|
460 |
+
'unstructured': st.session_state.demo_selected_methods['unstructured']
|
461 |
+
}
|
462 |
+
|
463 |
+
# Make request to FastAPI endpoint (uncomment when ready)
|
464 |
+
# response = requests.post('http://localhost:8000/extract', data=data)
|
465 |
+
# if response.status_code == 200:
|
466 |
+
# st.session_state.demo_results = response.json()
|
467 |
+
|
468 |
+
# For demo purposes, simulate successful processing for selected methods only
|
469 |
+
results = {}
|
470 |
+
if st.session_state.demo_selected_methods['docling']:
|
471 |
+
results['docling'] = {'status': 'success', 'total_tables': 5}
|
472 |
+
if st.session_state.demo_selected_methods['llamaparse']:
|
473 |
+
results['llamaparse'] = {'status': 'success', 'total_tables': 3}
|
474 |
+
if st.session_state.demo_selected_methods['unstructured']:
|
475 |
+
results['unstructured'] = {'status': 'success', 'total_tables': 4}
|
476 |
+
|
477 |
+
st.session_state.demo_results = {'results': results}
|
478 |
+
|
479 |
+
except Exception as e:
|
480 |
+
st.error(f"Error processing Tesla demo: {str(e)}")
|
481 |
+
|
482 |
+
def count_html_files(directory):
|
483 |
+
"""Count only HTML files in directory"""
|
484 |
+
if not os.path.exists(directory):
|
485 |
+
return 0
|
486 |
+
|
487 |
+
html_files = glob.glob(os.path.join(directory, "*.html"))
|
488 |
+
html_files.extend(glob.glob(os.path.join(directory, "**", "*.html"), recursive=True))
|
489 |
+
return len(html_files)
|
490 |
+
|
491 |
+
def get_excel_files(directory):
|
492 |
+
"""Get all Excel files from directory"""
|
493 |
+
if not os.path.exists(directory):
|
494 |
+
return []
|
495 |
+
|
496 |
+
excel_files = glob.glob(os.path.join(directory, "*.xlsx"))
|
497 |
+
excel_files.extend(glob.glob(os.path.join(directory, "*.xls")))
|
498 |
+
excel_files.extend(glob.glob(os.path.join(directory, "*.csv")))
|
499 |
+
excel_files.extend(glob.glob(os.path.join(directory, "**", "*.xlsx"), recursive=True))
|
500 |
+
excel_files.extend(glob.glob(os.path.join(directory, "**", "*.xls"), recursive=True))
|
501 |
+
return excel_files
|
502 |
+
|
503 |
+
def get_file_info(file_path):
|
504 |
+
"""Get file information including size and modification time"""
|
505 |
+
if not os.path.exists(file_path):
|
506 |
+
return {"size": 0, "modified": "Unknown"}
|
507 |
+
|
508 |
+
stat = os.stat(file_path)
|
509 |
+
size_kb = stat.st_size / 1024
|
510 |
+
modified = datetime.fromtimestamp(stat.st_mtime)
|
511 |
+
|
512 |
+
return {
|
513 |
+
"size": f"{size_kb:.1f} KB",
|
514 |
+
"modified": modified.strftime("%Y-%m-%d %H:%M")
|
515 |
+
}
|
516 |
+
|
517 |
+
def show_demo_results():
|
518 |
+
st.markdown("## π Tesla 10K Processing Results")
|
519 |
+
|
520 |
+
# Document info
|
521 |
+
col1, col2 = st.columns([2, 1])
|
522 |
+
with col1:
|
523 |
+
st.markdown("### π tesla_docs_28-41 (1)-9-14.pdf")
|
524 |
+
st.markdown("**Status:** β
Complete")
|
525 |
+
processed_methods = [method.title() for method, selected in st.session_state.demo_selected_methods.items() if selected]
|
526 |
+
st.markdown(f"**Processed with:** {', '.join(processed_methods)}")
|
527 |
+
|
528 |
+
with col2:
|
529 |
+
if st.button("π Reset"):
|
530 |
+
st.session_state.page = 'home'
|
531 |
+
st.session_state.processing = False
|
532 |
+
st.session_state.results = None
|
533 |
+
st.session_state.demo_results = None
|
534 |
+
st.session_state.selected_method = None
|
535 |
+
st.session_state.demo_selected_methods = {'docling': True, 'llamaparse': False, 'unstructured': False}
|
536 |
+
st.rerun()
|
537 |
+
|
538 |
+
# Method selection tabs - only show selected methods
|
539 |
+
available_methods = [method for method, selected in st.session_state.demo_selected_methods.items() if selected]
|
540 |
+
|
541 |
+
if len(available_methods) > 1:
|
542 |
+
st.markdown("### π§ Select Extraction Method to View")
|
543 |
+
|
544 |
+
method_labels = {
|
545 |
+
'docling': 'π§ Docling',
|
546 |
+
'llamaparse': 'π¦ LlamaParse',
|
547 |
+
'unstructured': 'π Unstructured'
|
548 |
+
}
|
549 |
+
|
550 |
+
# Create columns based on number of available methods
|
551 |
+
cols = st.columns(len(available_methods))
|
552 |
+
|
553 |
+
for i, method in enumerate(available_methods):
|
554 |
+
with cols[i]:
|
555 |
+
# Show HTML file count for each method using the same logic as show_html_tables
|
556 |
+
method_output_dir = os.path.join(OUTPUT_BASE_PATH, method)
|
557 |
+
html_files = []
|
558 |
+
if os.path.exists(method_output_dir):
|
559 |
+
html_files = glob.glob(os.path.join(method_output_dir, "**", "*.html"), recursive=True)
|
560 |
+
html_files = list(set(html_files))
|
561 |
+
html_count = len(html_files)
|
562 |
+
button_label = f"{method_labels[method]} ({html_count} HTML files)"
|
563 |
+
|
564 |
+
if st.button(button_label, key=f"tab_{method}", use_container_width=True):
|
565 |
+
st.session_state.selected_method = method
|
566 |
+
|
567 |
+
# Default to first available method if no method selected
|
568 |
+
if st.session_state.selected_method is None or st.session_state.selected_method not in available_methods:
|
569 |
+
st.session_state.selected_method = available_methods[0] if available_methods else None
|
570 |
+
|
571 |
+
# Show results for selected method
|
572 |
+
if st.session_state.selected_method:
|
573 |
+
show_method_results(st.session_state.selected_method)
|
574 |
+
|
575 |
+
def show_method_results(method):
|
576 |
+
st.markdown(f"### π Results from {method.title()}")
|
577 |
+
|
578 |
+
# Changed column ratio: 3:1 for HTML tables:Excel files
|
579 |
+
col1, col2 = st.columns([3, 1])
|
580 |
+
|
581 |
+
with col1:
|
582 |
+
st.markdown("#### π HTML Tables")
|
583 |
+
show_html_tables(method)
|
584 |
+
|
585 |
+
with col2:
|
586 |
+
st.markdown("#### π Excel Files")
|
587 |
+
show_excel_files(method)
|
588 |
+
|
589 |
+
def show_html_tables(method):
|
590 |
+
"""Display HTML tables from the method's output directory"""
|
591 |
+
method_output_dir = os.path.join(OUTPUT_BASE_PATH, method)
|
592 |
+
|
593 |
+
# Get actual HTML files from directory
|
594 |
+
html_files = []
|
595 |
+
if os.path.exists(method_output_dir):
|
596 |
+
# Use only the recursive glob, which includes the top-level directory
|
597 |
+
html_files = glob.glob(os.path.join(method_output_dir, "**", "*.html"), recursive=True)
|
598 |
+
# Remove duplicates just in case
|
599 |
+
html_files = list(set(html_files))
|
600 |
+
|
601 |
+
# Sort files by table number if possible (e.g., table_1, table_2, ...)
|
602 |
+
import re
|
603 |
+
def extract_table_number(filename):
|
604 |
+
match = re.search(r"table[_-](\d+)", filename, re.IGNORECASE)
|
605 |
+
if match:
|
606 |
+
return int(match.group(1))
|
607 |
+
return float('inf') # Put files without a number at the end
|
608 |
+
html_files.sort(key=lambda f: extract_table_number(os.path.basename(f)))
|
609 |
+
|
610 |
+
if html_files:
|
611 |
+
st.markdown(f"**Found {len(html_files)} HTML table(s):**")
|
612 |
+
|
613 |
+
# Display all HTML files in one scrollable container
|
614 |
+
st.markdown('<div class="table-container">', unsafe_allow_html=True)
|
615 |
+
|
616 |
+
for i, html_file in enumerate(html_files):
|
617 |
+
st.markdown(f"""
|
618 |
+
<div class="table-header">
|
619 |
+
<h4 style="color: #495057;">π Table {i+1}</h4>
|
620 |
+
<small style="color: #6c757d;">File: {os.path.basename(html_file)}</small>
|
621 |
+
</div>
|
622 |
+
""", unsafe_allow_html=True)
|
623 |
+
|
624 |
+
# Display HTML content
|
625 |
+
try:
|
626 |
+
with open(html_file, 'r', encoding='utf-8') as f:
|
627 |
+
html_content = f.read()
|
628 |
+
st.components.v1.html(html_content, height=300, scrolling=True)
|
629 |
+
|
630 |
+
except Exception as e:
|
631 |
+
st.error(f"Error displaying HTML file: {e}")
|
632 |
+
|
633 |
+
# Download button for individual HTML file
|
634 |
+
col_download1, col_download2, col_download3 = st.columns([1, 1, 2])
|
635 |
+
with col_download1:
|
636 |
+
try:
|
637 |
+
with open(html_file, 'r', encoding='utf-8') as f:
|
638 |
+
html_content = f.read()
|
639 |
+
st.download_button(
|
640 |
+
label=f"β¬οΈ Table {i+1}",
|
641 |
+
data=html_content,
|
642 |
+
file_name=f"table_{i+1}_{method}.html",
|
643 |
+
mime="text/html",
|
644 |
+
key=f"download_html_{method}_{i}",
|
645 |
+
use_container_width=True
|
646 |
+
)
|
647 |
+
except Exception as e:
|
648 |
+
st.error(f"Error reading file for download: {e}")
|
649 |
+
|
650 |
+
if i < len(html_files) - 1:
|
651 |
+
st.markdown("---")
|
652 |
+
|
653 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
654 |
+
|
655 |
+
else:
|
656 |
+
st.warning(f"No HTML files found in {method_output_dir}")
|
657 |
+
|
658 |
+
def show_excel_files(method):
|
659 |
+
"""Display Excel files from the method's output directory"""
|
660 |
+
method_output_dir = os.path.join(OUTPUT_BASE_PATH, method)
|
661 |
+
|
662 |
+
# Get actual Excel files from directory
|
663 |
+
excel_files = get_excel_files(method_output_dir)
|
664 |
+
|
665 |
+
if excel_files:
|
666 |
+
st.markdown(f"**Found {len(excel_files)} Excel file(s):**")
|
667 |
+
|
668 |
+
for i, excel_file in enumerate(excel_files):
|
669 |
+
# Get file info
|
670 |
+
file_info = get_file_info(excel_file)
|
671 |
+
file_name = os.path.basename(excel_file)
|
672 |
+
|
673 |
+
# File info card
|
674 |
+
st.markdown(f"""
|
675 |
+
<div class="file-info-card">
|
676 |
+
<strong style="color: #495057;">π {file_name}</strong>
|
677 |
+
<div class="file-stats">
|
678 |
+
<strong>Size:</strong> {file_info['size']}<br>
|
679 |
+
<strong>Modified:</strong> {file_info['modified']}
|
680 |
+
</div>
|
681 |
+
</div>
|
682 |
+
""", unsafe_allow_html=True)
|
683 |
+
|
684 |
+
# Try to read and display Excel file preview
|
685 |
+
try:
|
686 |
+
df = pd.read_excel(excel_file)
|
687 |
+
if not df.empty:
|
688 |
+
st.markdown(f"**Preview (first 5 rows):**")
|
689 |
+
st.dataframe(df.head(), use_container_width=True)
|
690 |
+
st.markdown(f"**Dimensions:** {df.shape[0]} Γ {df.shape[1]}")
|
691 |
+
else:
|
692 |
+
st.info("Excel file is empty")
|
693 |
+
except Exception as e:
|
694 |
+
# Try reading as CSV if Excel reading fails
|
695 |
+
try:
|
696 |
+
df = pd.read_csv(excel_file)
|
697 |
+
if not df.empty:
|
698 |
+
st.markdown(f"**Preview (first 5 rows, read as CSV):**")
|
699 |
+
st.dataframe(df.head(), use_container_width=True)
|
700 |
+
st.markdown(f"**Dimensions:** {df.shape[0]} Γ {df.shape[1]}")
|
701 |
+
else:
|
702 |
+
st.info("CSV file is empty")
|
703 |
+
except Exception as e2:
|
704 |
+
st.warning(f"Could not preview file as Excel or CSV: {e2}")
|
705 |
+
|
706 |
+
# Download button for Excel file
|
707 |
+
try:
|
708 |
+
with open(excel_file, 'rb') as f:
|
709 |
+
excel_data = f.read()
|
710 |
+
st.download_button(
|
711 |
+
label=f"β¬οΈ Download",
|
712 |
+
data=excel_data,
|
713 |
+
file_name=file_name,
|
714 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
715 |
+
key=f"download_excel_{method}_{i}",
|
716 |
+
use_container_width=True
|
717 |
+
)
|
718 |
+
except Exception as e:
|
719 |
+
st.error(f"Error reading Excel file for download: {e}")
|
720 |
+
|
721 |
+
if i < len(excel_files) - 1:
|
722 |
+
st.markdown("---")
|
723 |
+
else:
|
724 |
+
st.warning(f"No Excel files found in {method_output_dir}")
|
725 |
+
|
726 |
+
def process_document(file_path, output_dir, docling, llamaparse, unstructured):
|
727 |
+
"""Process document using the FastAPI endpoint"""
|
728 |
+
try:
|
729 |
+
# Prepare the request data
|
730 |
+
data = {
|
731 |
+
'input_file_path': file_path,
|
732 |
+
'output_dir': output_dir,
|
733 |
+
'docling': docling,
|
734 |
+
'llamaparse': llamaparse,
|
735 |
+
'unstructured': unstructured
|
736 |
+
}
|
737 |
+
|
738 |
+
# Show processing message
|
739 |
+
with st.spinner('Processing document...'):
|
740 |
+
# Make request to FastAPI endpoint
|
741 |
+
# Replace with your actual FastAPI endpoint URL
|
742 |
+
response = requests.post('http://localhost:8000/extract', data=data)
|
743 |
+
|
744 |
+
if response.status_code == 200:
|
745 |
+
st.session_state.results = response.json()
|
746 |
+
st.success("Document processed successfully!")
|
747 |
+
|
748 |
+
# Show results
|
749 |
+
results = st.session_state.results['results']
|
750 |
+
|
751 |
+
# Method selection for viewing results
|
752 |
+
st.markdown("### π View Results")
|
753 |
+
available_methods = [method for method in ['docling', 'llamaparse', 'unstructured']
|
754 |
+
if method in results and isinstance(results[method], dict)]
|
755 |
+
|
756 |
+
if available_methods:
|
757 |
+
selected_method = st.selectbox(
|
758 |
+
"Select extraction method to view:",
|
759 |
+
available_methods,
|
760 |
+
help="Choose which extraction method results to display"
|
761 |
+
)
|
762 |
+
|
763 |
+
if selected_method and isinstance(results[selected_method], dict):
|
764 |
+
method_result = results[selected_method]
|
765 |
+
st.json(method_result)
|
766 |
+
|
767 |
+
# List files in output directory
|
768 |
+
method_dir = os.path.join(output_dir, selected_method)
|
769 |
+
|
770 |
+
# HTML files
|
771 |
+
html_files = glob.glob(os.path.join(method_dir, "*.html"))
|
772 |
+
html_files.extend(glob.glob(os.path.join(method_dir, "**", "*.html"), recursive=True))
|
773 |
+
|
774 |
+
# Excel files
|
775 |
+
excel_files = get_excel_files(method_dir)
|
776 |
+
|
777 |
+
if html_files or excel_files:
|
778 |
+
st.markdown("### π Generated Files")
|
779 |
+
|
780 |
+
if html_files:
|
781 |
+
st.markdown("**HTML Files:**")
|
782 |
+
for html_file in html_files:
|
783 |
+
st.markdown(f"- {os.path.basename(html_file)}")
|
784 |
+
|
785 |
+
if excel_files:
|
786 |
+
st.markdown("**Excel Files:**")
|
787 |
+
for excel_file in excel_files:
|
788 |
+
st.markdown(f"- {os.path.basename(excel_file)}")
|
789 |
+
else:
|
790 |
+
st.warning("No successful extractions found.")
|
791 |
+
|
792 |
+
else:
|
793 |
+
st.error(f"Error processing document: {response.text}")
|
794 |
+
|
795 |
+
except requests.exceptions.ConnectionError:
|
796 |
+
st.error("Could not connect to the processing service. Please ensure the FastAPI server is running.")
|
797 |
+
except Exception as e:
|
798 |
+
st.error(f"An error occurred: {str(e)}")
|
799 |
+
|
800 |
+
def main():
|
801 |
+
# Navigation header
|
802 |
+
col1, col2 = st.columns([1, 1])
|
803 |
+
with col1:
|
804 |
+
st.markdown("### π PDF Parser")
|
805 |
+
st.markdown("*Table Extraction Tool*")
|
806 |
+
with col2:
|
807 |
+
nav_col1, nav_col2 = st.columns(2)
|
808 |
+
with nav_col1:
|
809 |
+
if st.button("Dashboard", use_container_width=True):
|
810 |
+
st.session_state.page = 'home'
|
811 |
+
st.rerun()
|
812 |
+
with nav_col2:
|
813 |
+
st.button("History", use_container_width=True)
|
814 |
+
st.markdown("---")
|
815 |
+
# Route to appropriate page
|
816 |
+
if st.session_state.page == 'home':
|
817 |
+
show_home_page()
|
818 |
+
elif st.session_state.page == 'upload':
|
819 |
+
show_upload_page()
|
820 |
+
elif st.session_state.page == 'demo_setup':
|
821 |
+
show_demo_setup_page()
|
822 |
+
elif st.session_state.page == 'demo':
|
823 |
+
show_demo_page()
|
824 |
|
825 |
+
if __name__ == "__main__":
|
826 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|