File size: 941 Bytes
5ed0967
97a4dbc
5ed0967
 
97a4dbc
5ed0967
 
 
 
 
 
 
97a4dbc
5ed0967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
from sentence_transformers import SentenceTransformer

# Load the Nomic embedding model
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)

def get_embedding(text):
    """Generate an embedding for the input text using Nomic encoder."""
    if not text.strip():
        return "Please provide some text."
    
    # Generate embedding
    embedding = model.encode([text])[0]  # Get the first (and only) embedding
    
    # Return embedding as list (more user-friendly in the UI)
    return embedding.tolist()

# Create Gradio interface
interface = gr.Interface(
    fn=get_embedding,
    inputs=gr.Textbox(lines=5, placeholder="Enter text to embed..."),
    outputs=gr.JSON(),
    title="Text Embedding with Nomic Encoder",
    description="Enter text to get its embedding vector using the Nomic Encoder model."
)

# Launch the interface
if __name__ == "__main__":
    interface.launch()