nomic-embedding / app.py
traversaal-ai's picture
Update app.py
e6887b2 verified
# import os
# import gradio as gr
# import numpy as np
# from transformers import AutoTokenizer, AutoModel
# import time
# import torch
# # :white_check_mark: Setup environment
# os.makedirs(os.environ.get("HF_HOME", "./hf_cache"), exist_ok=True)
# hf_token = os.environ.get("HF_TOKEN")
# if not hf_token:
# raise EnvironmentError(":x: Environment variable HF_TOKEN is not set.")
# # Check for GPU availability
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print(f"Using device: {device}")
# # :white_check_mark: Load model and tokenizer
# text_tokenizer = AutoTokenizer.from_pretrained(
# "nomic-ai/nomic-embed-text-v1.5",
# trust_remote_code=True,
# token=hf_token,
# cache_dir=os.environ["HF_HOME"]
# )
# text_model = AutoModel.from_pretrained(
# "nomic-ai/nomic-embed-text-v1.5",
# trust_remote_code=True,
# token=hf_token,
# cache_dir=os.environ["HF_HOME"]
# ).to(device) # Move model to GPU if available
# # :white_check_mark: Embedding function
# def get_text_embeddings(text):
# """
# Converts input text into a dense embedding using the Nomic embedding model.
# These embeddings are used to query Qdrant for semantically relevant document chunks.
# """
# inputs = text_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device) # Move inputs to same device as model
# with torch.no_grad(): # Disable gradient calculation for inference
# outputs = text_model(**inputs)
# embeddings = outputs.last_hidden_state.mean(dim=1)
# print(embeddings[0].detach().cpu().numpy())
# return embeddings[0].detach().cpu().numpy()
# # :white_check_mark: Gradio interface function
# def embed_text_interface(text):
# strt_time = time.time()
# embedding = get_text_embeddings(text)
# print(f"Total time taken by nomic to embed: {time.time()-strt_time}")
# return embedding
# # :white_check_mark: Gradio UI
# interface = gr.Interface(
# fn=embed_text_interface,
# inputs=gr.Textbox(label="Enter text to embed", lines=5),
# outputs=gr.Textbox(label="Embedding vector"),
# title="Text Embedding with Nomic AI",
# description="Enter some text, and get its embedding vector using Nomic's embedding model."
# )
# # :white_check_mark: Launch the app
# if __name__ == "__main__":
# interface.launch()
import os
import gradio as gr
import numpy as np
from transformers import AutoTokenizer, AutoModel
import time
import torch
# :white_check_mark: Setup environment
os.makedirs(os.environ.get("HF_HOME", "./hf_cache"), exist_ok=True)
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise EnvironmentError(":x: Environment variable HF_TOKEN is not set.")
# Check for GPU availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# :white_check_mark: Load model and tokenizer
text_tokenizer = AutoTokenizer.from_pretrained(
"nomic-ai/nomic-embed-text-v1.5",
trust_remote_code=True,
token=hf_token,
cache_dir=os.environ["HF_HOME"]
)
text_model = AutoModel.from_pretrained(
"nomic-ai/nomic-embed-text-v1.5",
trust_remote_code=True,
token=hf_token,
cache_dir=os.environ["HF_HOME"]
).to(device) # Move model to GPU if available
def get_text_embeddings(text):
"""Returns embedding as NumPy array"""
inputs = text_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
with torch.no_grad():
outputs = text_model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings[0].detach().cpu().numpy()
def format_embedding(embedding):
"""Formats the embedding as 'embedding: [x.xx, x.xx, ...]'"""
formatted = ", ".join([f"{x:.3f}" for x in embedding])
return f"embedding: [{formatted}]"
import json
def embed_text_interface(text):
strt_time = time.time()
embedding = get_text_embeddings(text)
print(f"Total time taken by nomic to embed: {time.time()-strt_time}")
# Convert to list and format for display
embedding_list = embedding.tolist()
formatted = {
"embedding": embedding_list,
"shape": len(embedding_list)
}
return formatted
interface = gr.Interface(
fn=embed_text_interface,
inputs=gr.Textbox(label="Input Text", lines=5),
outputs=gr.JSON(label="Embedding Vector"), # Using JSON output
title="Nomic Text Embeddings",
description="Returns embeddings as a Python list",
examples=[
["This is a sample text"],
["Another example sentence"]
]
)
if __name__ == "__main__":
interface.queue(api_open=True).launch()