Spaces:
Runtime error
Runtime error
| import torch | |
| from torch.autograd import Function | |
| from ..utils import ext_loader | |
| ext_module = ext_loader.load_ext('_ext', [ | |
| 'furthest_point_sampling_forward', | |
| 'furthest_point_sampling_with_dist_forward' | |
| ]) | |
| class FurthestPointSampling(Function): | |
| """Uses iterative furthest point sampling to select a set of features whose | |
| corresponding points have the furthest distance.""" | |
| def forward(ctx, points_xyz: torch.Tensor, | |
| num_points: int) -> torch.Tensor: | |
| """ | |
| Args: | |
| points_xyz (Tensor): (B, N, 3) where N > num_points. | |
| num_points (int): Number of points in the sampled set. | |
| Returns: | |
| Tensor: (B, num_points) indices of the sampled points. | |
| """ | |
| assert points_xyz.is_contiguous() | |
| B, N = points_xyz.size()[:2] | |
| output = torch.cuda.IntTensor(B, num_points) | |
| temp = torch.cuda.FloatTensor(B, N).fill_(1e10) | |
| ext_module.furthest_point_sampling_forward( | |
| points_xyz, | |
| temp, | |
| output, | |
| b=B, | |
| n=N, | |
| m=num_points, | |
| ) | |
| if torch.__version__ != 'parrots': | |
| ctx.mark_non_differentiable(output) | |
| return output | |
| def backward(xyz, a=None): | |
| return None, None | |
| class FurthestPointSamplingWithDist(Function): | |
| """Uses iterative furthest point sampling to select a set of features whose | |
| corresponding points have the furthest distance.""" | |
| def forward(ctx, points_dist: torch.Tensor, | |
| num_points: int) -> torch.Tensor: | |
| """ | |
| Args: | |
| points_dist (Tensor): (B, N, N) Distance between each point pair. | |
| num_points (int): Number of points in the sampled set. | |
| Returns: | |
| Tensor: (B, num_points) indices of the sampled points. | |
| """ | |
| assert points_dist.is_contiguous() | |
| B, N, _ = points_dist.size() | |
| output = points_dist.new_zeros([B, num_points], dtype=torch.int32) | |
| temp = points_dist.new_zeros([B, N]).fill_(1e10) | |
| ext_module.furthest_point_sampling_with_dist_forward( | |
| points_dist, temp, output, b=B, n=N, m=num_points) | |
| if torch.__version__ != 'parrots': | |
| ctx.mark_non_differentiable(output) | |
| return output | |
| def backward(xyz, a=None): | |
| return None, None | |
| furthest_point_sample = FurthestPointSampling.apply | |
| furthest_point_sample_with_dist = FurthestPointSamplingWithDist.apply | |