Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from annotator.uniformer.mmcv.utils import TORCH_VERSION, build_from_cfg, digit_version | |
| from .registry import ACTIVATION_LAYERS | |
| for module in [ | |
| nn.ReLU, nn.LeakyReLU, nn.PReLU, nn.RReLU, nn.ReLU6, nn.ELU, | |
| nn.Sigmoid, nn.Tanh | |
| ]: | |
| ACTIVATION_LAYERS.register_module(module=module) | |
| class Clamp(nn.Module): | |
| """Clamp activation layer. | |
| This activation function is to clamp the feature map value within | |
| :math:`[min, max]`. More details can be found in ``torch.clamp()``. | |
| Args: | |
| min (Number | optional): Lower-bound of the range to be clamped to. | |
| Default to -1. | |
| max (Number | optional): Upper-bound of the range to be clamped to. | |
| Default to 1. | |
| """ | |
| def __init__(self, min=-1., max=1.): | |
| super(Clamp, self).__init__() | |
| self.min = min | |
| self.max = max | |
| def forward(self, x): | |
| """Forward function. | |
| Args: | |
| x (torch.Tensor): The input tensor. | |
| Returns: | |
| torch.Tensor: Clamped tensor. | |
| """ | |
| return torch.clamp(x, min=self.min, max=self.max) | |
| class GELU(nn.Module): | |
| r"""Applies the Gaussian Error Linear Units function: | |
| .. math:: | |
| \text{GELU}(x) = x * \Phi(x) | |
| where :math:`\Phi(x)` is the Cumulative Distribution Function for | |
| Gaussian Distribution. | |
| Shape: | |
| - Input: :math:`(N, *)` where `*` means, any number of additional | |
| dimensions | |
| - Output: :math:`(N, *)`, same shape as the input | |
| .. image:: scripts/activation_images/GELU.png | |
| Examples:: | |
| >>> m = nn.GELU() | |
| >>> input = torch.randn(2) | |
| >>> output = m(input) | |
| """ | |
| def forward(self, input): | |
| return F.gelu(input) | |
| if (TORCH_VERSION == 'parrots' | |
| or digit_version(TORCH_VERSION) < digit_version('1.4')): | |
| ACTIVATION_LAYERS.register_module(module=GELU) | |
| else: | |
| ACTIVATION_LAYERS.register_module(module=nn.GELU) | |
| def build_activation_layer(cfg): | |
| """Build activation layer. | |
| Args: | |
| cfg (dict): The activation layer config, which should contain: | |
| - type (str): Layer type. | |
| - layer args: Args needed to instantiate an activation layer. | |
| Returns: | |
| nn.Module: Created activation layer. | |
| """ | |
| return build_from_cfg(cfg, ACTIVATION_LAYERS) | |