Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from abc import ABCMeta | |
| import torch | |
| import torch.nn as nn | |
| from ..utils import constant_init, normal_init | |
| from .conv_module import ConvModule | |
| from .registry import PLUGIN_LAYERS | |
| class _NonLocalNd(nn.Module, metaclass=ABCMeta): | |
| """Basic Non-local module. | |
| This module is proposed in | |
| "Non-local Neural Networks" | |
| Paper reference: https://arxiv.org/abs/1711.07971 | |
| Code reference: https://github.com/AlexHex7/Non-local_pytorch | |
| Args: | |
| in_channels (int): Channels of the input feature map. | |
| reduction (int): Channel reduction ratio. Default: 2. | |
| use_scale (bool): Whether to scale pairwise_weight by | |
| `1/sqrt(inter_channels)` when the mode is `embedded_gaussian`. | |
| Default: True. | |
| conv_cfg (None | dict): The config dict for convolution layers. | |
| If not specified, it will use `nn.Conv2d` for convolution layers. | |
| Default: None. | |
| norm_cfg (None | dict): The config dict for normalization layers. | |
| Default: None. (This parameter is only applicable to conv_out.) | |
| mode (str): Options are `gaussian`, `concatenation`, | |
| `embedded_gaussian` and `dot_product`. Default: embedded_gaussian. | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| reduction=2, | |
| use_scale=True, | |
| conv_cfg=None, | |
| norm_cfg=None, | |
| mode='embedded_gaussian', | |
| **kwargs): | |
| super(_NonLocalNd, self).__init__() | |
| self.in_channels = in_channels | |
| self.reduction = reduction | |
| self.use_scale = use_scale | |
| self.inter_channels = max(in_channels // reduction, 1) | |
| self.mode = mode | |
| if mode not in [ | |
| 'gaussian', 'embedded_gaussian', 'dot_product', 'concatenation' | |
| ]: | |
| raise ValueError("Mode should be in 'gaussian', 'concatenation', " | |
| f"'embedded_gaussian' or 'dot_product', but got " | |
| f'{mode} instead.') | |
| # g, theta, phi are defaulted as `nn.ConvNd`. | |
| # Here we use ConvModule for potential usage. | |
| self.g = ConvModule( | |
| self.in_channels, | |
| self.inter_channels, | |
| kernel_size=1, | |
| conv_cfg=conv_cfg, | |
| act_cfg=None) | |
| self.conv_out = ConvModule( | |
| self.inter_channels, | |
| self.in_channels, | |
| kernel_size=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None) | |
| if self.mode != 'gaussian': | |
| self.theta = ConvModule( | |
| self.in_channels, | |
| self.inter_channels, | |
| kernel_size=1, | |
| conv_cfg=conv_cfg, | |
| act_cfg=None) | |
| self.phi = ConvModule( | |
| self.in_channels, | |
| self.inter_channels, | |
| kernel_size=1, | |
| conv_cfg=conv_cfg, | |
| act_cfg=None) | |
| if self.mode == 'concatenation': | |
| self.concat_project = ConvModule( | |
| self.inter_channels * 2, | |
| 1, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=False, | |
| act_cfg=dict(type='ReLU')) | |
| self.init_weights(**kwargs) | |
| def init_weights(self, std=0.01, zeros_init=True): | |
| if self.mode != 'gaussian': | |
| for m in [self.g, self.theta, self.phi]: | |
| normal_init(m.conv, std=std) | |
| else: | |
| normal_init(self.g.conv, std=std) | |
| if zeros_init: | |
| if self.conv_out.norm_cfg is None: | |
| constant_init(self.conv_out.conv, 0) | |
| else: | |
| constant_init(self.conv_out.norm, 0) | |
| else: | |
| if self.conv_out.norm_cfg is None: | |
| normal_init(self.conv_out.conv, std=std) | |
| else: | |
| normal_init(self.conv_out.norm, std=std) | |
| def gaussian(self, theta_x, phi_x): | |
| # NonLocal1d pairwise_weight: [N, H, H] | |
| # NonLocal2d pairwise_weight: [N, HxW, HxW] | |
| # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW] | |
| pairwise_weight = torch.matmul(theta_x, phi_x) | |
| pairwise_weight = pairwise_weight.softmax(dim=-1) | |
| return pairwise_weight | |
| def embedded_gaussian(self, theta_x, phi_x): | |
| # NonLocal1d pairwise_weight: [N, H, H] | |
| # NonLocal2d pairwise_weight: [N, HxW, HxW] | |
| # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW] | |
| pairwise_weight = torch.matmul(theta_x, phi_x) | |
| if self.use_scale: | |
| # theta_x.shape[-1] is `self.inter_channels` | |
| pairwise_weight /= theta_x.shape[-1]**0.5 | |
| pairwise_weight = pairwise_weight.softmax(dim=-1) | |
| return pairwise_weight | |
| def dot_product(self, theta_x, phi_x): | |
| # NonLocal1d pairwise_weight: [N, H, H] | |
| # NonLocal2d pairwise_weight: [N, HxW, HxW] | |
| # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW] | |
| pairwise_weight = torch.matmul(theta_x, phi_x) | |
| pairwise_weight /= pairwise_weight.shape[-1] | |
| return pairwise_weight | |
| def concatenation(self, theta_x, phi_x): | |
| # NonLocal1d pairwise_weight: [N, H, H] | |
| # NonLocal2d pairwise_weight: [N, HxW, HxW] | |
| # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW] | |
| h = theta_x.size(2) | |
| w = phi_x.size(3) | |
| theta_x = theta_x.repeat(1, 1, 1, w) | |
| phi_x = phi_x.repeat(1, 1, h, 1) | |
| concat_feature = torch.cat([theta_x, phi_x], dim=1) | |
| pairwise_weight = self.concat_project(concat_feature) | |
| n, _, h, w = pairwise_weight.size() | |
| pairwise_weight = pairwise_weight.view(n, h, w) | |
| pairwise_weight /= pairwise_weight.shape[-1] | |
| return pairwise_weight | |
| def forward(self, x): | |
| # Assume `reduction = 1`, then `inter_channels = C` | |
| # or `inter_channels = C` when `mode="gaussian"` | |
| # NonLocal1d x: [N, C, H] | |
| # NonLocal2d x: [N, C, H, W] | |
| # NonLocal3d x: [N, C, T, H, W] | |
| n = x.size(0) | |
| # NonLocal1d g_x: [N, H, C] | |
| # NonLocal2d g_x: [N, HxW, C] | |
| # NonLocal3d g_x: [N, TxHxW, C] | |
| g_x = self.g(x).view(n, self.inter_channels, -1) | |
| g_x = g_x.permute(0, 2, 1) | |
| # NonLocal1d theta_x: [N, H, C], phi_x: [N, C, H] | |
| # NonLocal2d theta_x: [N, HxW, C], phi_x: [N, C, HxW] | |
| # NonLocal3d theta_x: [N, TxHxW, C], phi_x: [N, C, TxHxW] | |
| if self.mode == 'gaussian': | |
| theta_x = x.view(n, self.in_channels, -1) | |
| theta_x = theta_x.permute(0, 2, 1) | |
| if self.sub_sample: | |
| phi_x = self.phi(x).view(n, self.in_channels, -1) | |
| else: | |
| phi_x = x.view(n, self.in_channels, -1) | |
| elif self.mode == 'concatenation': | |
| theta_x = self.theta(x).view(n, self.inter_channels, -1, 1) | |
| phi_x = self.phi(x).view(n, self.inter_channels, 1, -1) | |
| else: | |
| theta_x = self.theta(x).view(n, self.inter_channels, -1) | |
| theta_x = theta_x.permute(0, 2, 1) | |
| phi_x = self.phi(x).view(n, self.inter_channels, -1) | |
| pairwise_func = getattr(self, self.mode) | |
| # NonLocal1d pairwise_weight: [N, H, H] | |
| # NonLocal2d pairwise_weight: [N, HxW, HxW] | |
| # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW] | |
| pairwise_weight = pairwise_func(theta_x, phi_x) | |
| # NonLocal1d y: [N, H, C] | |
| # NonLocal2d y: [N, HxW, C] | |
| # NonLocal3d y: [N, TxHxW, C] | |
| y = torch.matmul(pairwise_weight, g_x) | |
| # NonLocal1d y: [N, C, H] | |
| # NonLocal2d y: [N, C, H, W] | |
| # NonLocal3d y: [N, C, T, H, W] | |
| y = y.permute(0, 2, 1).contiguous().reshape(n, self.inter_channels, | |
| *x.size()[2:]) | |
| output = x + self.conv_out(y) | |
| return output | |
| class NonLocal1d(_NonLocalNd): | |
| """1D Non-local module. | |
| Args: | |
| in_channels (int): Same as `NonLocalND`. | |
| sub_sample (bool): Whether to apply max pooling after pairwise | |
| function (Note that the `sub_sample` is applied on spatial only). | |
| Default: False. | |
| conv_cfg (None | dict): Same as `NonLocalND`. | |
| Default: dict(type='Conv1d'). | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| sub_sample=False, | |
| conv_cfg=dict(type='Conv1d'), | |
| **kwargs): | |
| super(NonLocal1d, self).__init__( | |
| in_channels, conv_cfg=conv_cfg, **kwargs) | |
| self.sub_sample = sub_sample | |
| if sub_sample: | |
| max_pool_layer = nn.MaxPool1d(kernel_size=2) | |
| self.g = nn.Sequential(self.g, max_pool_layer) | |
| if self.mode != 'gaussian': | |
| self.phi = nn.Sequential(self.phi, max_pool_layer) | |
| else: | |
| self.phi = max_pool_layer | |
| class NonLocal2d(_NonLocalNd): | |
| """2D Non-local module. | |
| Args: | |
| in_channels (int): Same as `NonLocalND`. | |
| sub_sample (bool): Whether to apply max pooling after pairwise | |
| function (Note that the `sub_sample` is applied on spatial only). | |
| Default: False. | |
| conv_cfg (None | dict): Same as `NonLocalND`. | |
| Default: dict(type='Conv2d'). | |
| """ | |
| _abbr_ = 'nonlocal_block' | |
| def __init__(self, | |
| in_channels, | |
| sub_sample=False, | |
| conv_cfg=dict(type='Conv2d'), | |
| **kwargs): | |
| super(NonLocal2d, self).__init__( | |
| in_channels, conv_cfg=conv_cfg, **kwargs) | |
| self.sub_sample = sub_sample | |
| if sub_sample: | |
| max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2)) | |
| self.g = nn.Sequential(self.g, max_pool_layer) | |
| if self.mode != 'gaussian': | |
| self.phi = nn.Sequential(self.phi, max_pool_layer) | |
| else: | |
| self.phi = max_pool_layer | |
| class NonLocal3d(_NonLocalNd): | |
| """3D Non-local module. | |
| Args: | |
| in_channels (int): Same as `NonLocalND`. | |
| sub_sample (bool): Whether to apply max pooling after pairwise | |
| function (Note that the `sub_sample` is applied on spatial only). | |
| Default: False. | |
| conv_cfg (None | dict): Same as `NonLocalND`. | |
| Default: dict(type='Conv3d'). | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| sub_sample=False, | |
| conv_cfg=dict(type='Conv3d'), | |
| **kwargs): | |
| super(NonLocal3d, self).__init__( | |
| in_channels, conv_cfg=conv_cfg, **kwargs) | |
| self.sub_sample = sub_sample | |
| if sub_sample: | |
| max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2)) | |
| self.g = nn.Sequential(self.g, max_pool_layer) | |
| if self.mode != 'gaussian': | |
| self.phi = nn.Sequential(self.phi, max_pool_layer) | |
| else: | |
| self.phi = max_pool_layer | |