import gradio as gr from datasets import load_dataset from trl import SFTTrainer, SFTConfig from transformers import AutoTokenizer import pandas as pd import numpy as np TRUNCATION_LENGTHS = [128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768] SEED = 42 N_SAMPLES = 1000 CODE_TEMPLATE = """ training_args = SFTConfig( ..., max_length={}, )""" def benchmark(model_name, dataset_name): print(f"Running benchmark for model: {model_name} on dataset: {dataset_name}...") print("Loading dataset...") dataset = load_dataset(dataset_name, split="train", streaming=True).shuffle(seed=SEED).take(N_SAMPLES) print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_name) print("Tokenizing dataset...") config = SFTConfig(max_length=None, bf16=False) tokenized_dataset = SFTTrainer._prepare_dataset( None, dataset, tokenizer, config, packing=False, formatting_func=None, dataset_name="train" ) print("Computing the sequence lengths and total tokens") sequence_lengths = [len(sample["input_ids"]) for sample in tokenized_dataset] total_tokens = sum(sequence_lengths) print("Computing the truncation ratios") truncation_ratios = [] recommended = None for max_len in TRUNCATION_LENGTHS: total_truncated_tokens = sum(max(length - max_len, 0) for length in sequence_lengths) truncation_ratio = total_truncated_tokens / total_tokens * 100 truncation_ratios.append(truncation_ratio) if recommended is None and truncation_ratio < 5.0: recommended = max_len hist = np.histogram(sequence_lengths, bins=50) lengths_distribution = pd.DataFrame({ "max_length": (hist[1][:-1] + hist[1][1:])/2, "Ratio (%)": hist[0]/N_SAMPLES*100, }) truncation_data = pd.DataFrame({ "max_length": [str(value) for value in TRUNCATION_LENGTHS], "Ratio (%)": truncation_ratios, }) return lengths_distribution, truncation_data, CODE_TEMPLATE.format(recommended) with gr.Blocks() as demo: model_input = gr.Textbox(label="Model Name", value="Qwen/Qwen3-0.6B") dataset_input = gr.Textbox(label="Dataset Name", value="trl-lib/tldr") run_button = gr.Button("Run estimation") lengths_plot = gr.BarPlot(None, title="Length distribution", x="max_length", y="Ratio (%)") truncation_ratio_plot = gr.BarPlot(None, title="Truncation ratio (how many tokens are discarded)", x="max_length", y="Ratio (%)") recommended_code = gr.Code(CODE_TEMPLATE.format("..."), language="python", label="Recommended configuration") run_button.click(fn=benchmark, inputs=[model_input, dataset_input], outputs=[lengths_plot, truncation_ratio_plot, recommended_code]) with gr.Accordion("See details", open=False): gr.Markdown(""" This tool helps you choose an appropriate `max_length` value for your SFT training (`SFTConfig`) by analyzing the tokenized dataset. **How it works:** - Randomly samples 1,000 examples from your dataset. - Prepares and tokenizes the data exactly as `SFTTrainer` would. - Generates two visualizations: - **Sequence Length Distribution:** Shows how long your tokenized sequences are. - **Truncation Ratio:** Estimates the percentage of tokens that would be discarded (truncated) for different `max_length` values. - Recommends the smallest `max_length` where truncation affects less than 5% of the tokens. Use this tool to balance efficiency and memory usage when setting your `max_length` parameter. """) demo.launch()