qgallouedec HF Staff commited on
Commit
ee803a6
·
verified ·
1 Parent(s): e218a88

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +122 -0
app.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import gradio as gr
3
+ from transformers import AutoConfig, AutoModelForCausalLM
4
+ from accelerate import init_empty_weights
5
+
6
+ def recommend_gpu_mem_util(
7
+ model_config_url,
8
+ batch_size,
9
+ max_prompt_length,
10
+ max_completion_length,
11
+ tp_size,
12
+ gpu_memory=79,
13
+ precision_in_bytes=2,
14
+ kv_multiplier=2
15
+ ):
16
+ # Load model config from HF URL
17
+ try:
18
+ config = AutoConfig.from_pretrained(model_config_url)
19
+ except Exception as e:
20
+ msg = f"Failed to load model config from URL: {e}"
21
+ return msg, {"Error": msg}
22
+
23
+ # Extract model config params
24
+ try:
25
+ num_hidden_layers = getattr(config, "num_hidden_layers")
26
+ hidden_size = getattr(config, "hidden_size")
27
+ num_attention_heads = getattr(config, "num_attention_heads")
28
+ num_key_value_heads = getattr(config, "num_key_value_heads", num_attention_heads)
29
+ except Exception as e:
30
+ msg = f"Required field missing in model config: {e}"
31
+ return msg, {"Error": msg}
32
+
33
+ # Estimate model no. parameters
34
+ try:
35
+ with init_empty_weights():
36
+ model = AutoModelForCausalLM.from_config(config)
37
+ num_params = sum(p.numel() for p in model.parameters())
38
+ model_params = num_params / 1e9
39
+ est_msg = f"Estimated model_params from config: {model_params:.2f}B"
40
+ except Exception as e:
41
+ msg = f"Failed to estimate model parameters: {e}"
42
+ return msg, {"Error": msg}
43
+
44
+ # Calculate all memory and utilization values
45
+ try:
46
+ seq_len = max_prompt_length + max_completion_length
47
+
48
+ model_size = float(model_params) * 1024**3 * precision_in_bytes / tp_size
49
+
50
+ # KV_cache_per_token = kv_multiplier (K and V) * num_hidden_layers * (num_key_value_heads * hidden_size / num_attention_heads) * precision_in_bytes
51
+ kv_cache_per_token = (
52
+ kv_multiplier
53
+ * num_hidden_layers
54
+ * (num_key_value_heads * hidden_size / num_attention_heads)
55
+ * precision_in_bytes
56
+ )
57
+ # KV_cache_total = KV_cache_per_token * Batch_size * Seq_len (max_prompt_length + max_completion_length)
58
+ kv_cache_total = kv_cache_per_token * batch_size * seq_len
59
+ # Buffer = (Model + KV_cache) * 0.2 # generous 20% buffer
60
+ buffer_size = 0.2 * (model_size + kv_cache_total)
61
+ # Total = Model + KV_cache + Buffer
62
+ total_required = model_size + kv_cache_total + buffer_size
63
+ # GPU utilization = Total_reqd / Total_gpu
64
+ gpu_memory_bytes = float(gpu_memory) * 1024**3
65
+ gpu_utilization_ratio = total_required / gpu_memory_bytes
66
+ # Round up to nearest 0.05 - this generous estimate works much better than actual prediction!
67
+ rounded_utilization = math.ceil(gpu_utilization_ratio * 20) / 20 + 0.05
68
+
69
+ main_result = f"vllm_gpu_memory_utilization = {rounded_utilization:.2f}"
70
+ ans = {
71
+ "KV_cache_per_token_MB": kv_cache_per_token / 1024**2,
72
+ "KV_cache_total_GB": kv_cache_total / 1024**3,
73
+ "Model_size_GB": model_size / 1024**3,
74
+ "Buffer_GB": buffer_size / 1024**3,
75
+ "Total_required_GB": total_required / 1024**3,
76
+ "GPU_mem_util": gpu_utilization_ratio,
77
+ "GPU_mem_util_recommended": rounded_utilization,
78
+ "model_params": est_msg,
79
+ "num_hidden_layers": num_hidden_layers,
80
+ "hidden_size": hidden_size,
81
+ "num_attention_heads": num_attention_heads,
82
+ "num_key_value_heads": num_key_value_heads,
83
+ }
84
+
85
+ return main_result, ans
86
+ except Exception as e:
87
+ msg = f"Error during calculation: {e}"
88
+ return msg, {"Error": msg}
89
+
90
+ iface = gr.Interface(
91
+ fn=recommend_gpu_mem_util,
92
+ inputs=[
93
+ gr.Textbox(label="Model Config URL (HuggingFace)", value="https://huggingface.co/Qwen/Qwen2.5-Math-1.5B/resolve/main/config.json"),
94
+ gr.Number(label="per_device_train_batch_size", value=4),
95
+ gr.Number(label="max_prompt_length", value=512),
96
+ gr.Number(label="max_completion_length", value=512),
97
+ gr.Number(label="vllm_tensor_parallel_size (tp_size)", value=1),
98
+ gr.Number(label="GPU Memory (GB)", value=79),
99
+ gr.Number(label="Precision in Bytes (e.g., 2)", value=2),
100
+ gr.Number(label="KV Multiplier", value=2),
101
+ ],
102
+ outputs=[
103
+ gr.Textbox(label="Recommended vLLM GPU Memory Utilization"),
104
+ gr.JSON(label="Calculation Details"),
105
+ ],
106
+ title="vLLM GRPO GPU Memory Utilization Estimator",
107
+ description = """
108
+ Paste your HuggingFace model config URL (ending in config.json), and enter experiment details.
109
+ Model parameters are automatically extracted and estimated from the config.
110
+
111
+ Note: This is a general recommendation and may not be optimal for your specific environment.
112
+ Always verify your actual training GPU requirements. For example, if you're using DeepSpeed, consider utilizing their memory estimation tool:
113
+ https://deepspeed.readthedocs.io/en/latest/memory.html
114
+
115
+ If you encounter "not enough memory" errors, try increasing the GPU memory utilization setting.
116
+ If you experience out-of-memory (OOM) errors, lower the utilization value and/or reduce your batch size.
117
+ """,
118
+ allow_flagging="never"
119
+ )
120
+
121
+ if __name__ == "__main__":
122
+ iface.launch()