import math import gradio as gr from transformers import AutoConfig, AutoModelForCausalLM from accelerate import init_empty_weights def recommend_gpu_mem_util( model_config_url, batch_size, max_prompt_length, max_completion_length, tp_size, gpu_memory=79, precision_in_bytes=2, kv_multiplier=2 ): # Load model config from HF URL try: config = AutoConfig.from_pretrained(model_config_url) except Exception as e: msg = f"Failed to load model config from URL: {e}" return msg, {"Error": msg} # Extract model config params try: num_hidden_layers = getattr(config, "num_hidden_layers") hidden_size = getattr(config, "hidden_size") num_attention_heads = getattr(config, "num_attention_heads") num_key_value_heads = getattr(config, "num_key_value_heads", num_attention_heads) except Exception as e: msg = f"Required field missing in model config: {e}" return msg, {"Error": msg} # Estimate model no. parameters try: with init_empty_weights(): model = AutoModelForCausalLM.from_config(config) num_params = sum(p.numel() for p in model.parameters()) model_params = num_params / 1e9 est_msg = f"Estimated model_params from config: {model_params:.2f}B" except Exception as e: msg = f"Failed to estimate model parameters: {e}" return msg, {"Error": msg} # Calculate all memory and utilization values try: seq_len = max_prompt_length + max_completion_length model_size = float(model_params) * 1024**3 * precision_in_bytes / tp_size # KV_cache_per_token = kv_multiplier (K and V) * num_hidden_layers * (num_key_value_heads * hidden_size / num_attention_heads) * precision_in_bytes kv_cache_per_token = ( kv_multiplier * num_hidden_layers * (num_key_value_heads * hidden_size / num_attention_heads) * precision_in_bytes ) # KV_cache_total = KV_cache_per_token * Batch_size * Seq_len (max_prompt_length + max_completion_length) kv_cache_total = kv_cache_per_token * batch_size * seq_len # Buffer = (Model + KV_cache) * 0.2 # generous 20% buffer buffer_size = 0.2 * (model_size + kv_cache_total) # Total = Model + KV_cache + Buffer total_required = model_size + kv_cache_total + buffer_size # GPU utilization = Total_reqd / Total_gpu gpu_memory_bytes = float(gpu_memory) * 1024**3 gpu_utilization_ratio = total_required / gpu_memory_bytes # Round up to nearest 0.05 - this generous estimate works much better than actual prediction! rounded_utilization = math.ceil(gpu_utilization_ratio * 20) / 20 + 0.05 main_result = f"vllm_gpu_memory_utilization = {rounded_utilization:.2f}" ans = { "KV_cache_per_token_MB": kv_cache_per_token / 1024**2, "KV_cache_total_GB": kv_cache_total / 1024**3, "Model_size_GB": model_size / 1024**3, "Buffer_GB": buffer_size / 1024**3, "Total_required_GB": total_required / 1024**3, "GPU_mem_util": gpu_utilization_ratio, "GPU_mem_util_recommended": rounded_utilization, "model_params": est_msg, "num_hidden_layers": num_hidden_layers, "hidden_size": hidden_size, "num_attention_heads": num_attention_heads, "num_key_value_heads": num_key_value_heads, } return main_result, ans except Exception as e: msg = f"Error during calculation: {e}" return msg, {"Error": msg} iface = gr.Interface( fn=recommend_gpu_mem_util, inputs=[ gr.Textbox(label="Model Config URL (HuggingFace)", value="https://huggingface.co/Qwen/Qwen2.5-Math-1.5B/resolve/main/config.json"), gr.Number(label="per_device_train_batch_size", value=4), gr.Number(label="max_prompt_length", value=512), gr.Number(label="max_completion_length", value=512), gr.Number(label="vllm_tensor_parallel_size (tp_size)", value=1), gr.Number(label="GPU Memory (GB)", value=79), gr.Number(label="Precision in Bytes (e.g., 2)", value=2), gr.Number(label="KV Multiplier", value=2), ], outputs=[ gr.Textbox(label="Recommended vLLM GPU Memory Utilization"), gr.JSON(label="Calculation Details"), ], title="vLLM GRPO GPU Memory Utilization Estimator", description = """ Paste your HuggingFace model config URL (ending in config.json), and enter experiment details. Model parameters are automatically extracted and estimated from the config. Note: This is a general recommendation and may not be optimal for your specific environment. Always verify your actual training GPU requirements. For example, if you're using DeepSpeed, consider utilizing their memory estimation tool: https://deepspeed.readthedocs.io/en/latest/memory.html If you encounter "not enough memory" errors, try increasing the GPU memory utilization setting. If you experience out-of-memory (OOM) errors, lower the utilization value and/or reduce your batch size. """, allow_flagging="never" ) if __name__ == "__main__": iface.launch()