|
import hydra
|
|
import torch
|
|
import numpy as np
|
|
import pandas as pd
|
|
import statistics
|
|
from os.path import join, dirname
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
class QuadTree(object):
|
|
def __init__(self, data, id="", depth=3, do_split=5000):
|
|
self.id = id
|
|
self.data = data
|
|
|
|
coord = data[["latitude", "longitude"]].to_numpy()
|
|
|
|
|
|
mins = coord.min(0)
|
|
|
|
maxs = coord.max(0)
|
|
|
|
self.mins = np.asarray(mins)
|
|
self.maxs = np.asarray(maxs)
|
|
self.sizes = self.maxs - self.mins
|
|
|
|
self.children = []
|
|
|
|
|
|
sorted_data_lat = sorted(coord, key=lambda point: point[0])
|
|
|
|
|
|
median_lat = statistics.median(point[0] for point in sorted_data_lat)
|
|
|
|
|
|
data_left = [point for point in sorted_data_lat if point[0] <= median_lat]
|
|
data_right = [point for point in sorted_data_lat if point[0] > median_lat]
|
|
|
|
|
|
sorted_data_left_lon = sorted(data_left, key=lambda point: point[1])
|
|
sorted_data_right_lon = sorted(data_right, key=lambda point: point[1])
|
|
|
|
|
|
median_lon_left = statistics.median(point[1] for point in sorted_data_left_lon)
|
|
median_lon_right = statistics.median(
|
|
point[1] for point in sorted_data_right_lon
|
|
)
|
|
|
|
if (depth > 0) and (len(self.data) >= do_split):
|
|
|
|
data_q1 = data[
|
|
(data["latitude"] < median_lat) & (data["longitude"] < median_lon_left)
|
|
]
|
|
data_q2 = data[
|
|
(data["latitude"] < median_lat) & (data["longitude"] >= median_lon_left)
|
|
]
|
|
data_q3 = data[
|
|
(data["latitude"] >= median_lat)
|
|
& (data["longitude"] < median_lon_right)
|
|
]
|
|
data_q4 = data[
|
|
(data["latitude"] >= median_lat)
|
|
& (data["longitude"] >= median_lon_right)
|
|
]
|
|
|
|
|
|
if data_q1.shape[0] > 0:
|
|
self.children.append(
|
|
QuadTree(
|
|
data_q1,
|
|
id + "0",
|
|
depth - 1,
|
|
do_split=do_split,
|
|
)
|
|
)
|
|
if data_q2.shape[0] > 0:
|
|
self.children.append(
|
|
QuadTree(
|
|
data_q2,
|
|
id + "1",
|
|
depth - 1,
|
|
do_split=do_split,
|
|
)
|
|
)
|
|
if data_q3.shape[0] > 0:
|
|
self.children.append(
|
|
QuadTree(
|
|
data_q3,
|
|
id + "2",
|
|
depth - 1,
|
|
do_split=do_split,
|
|
)
|
|
)
|
|
if data_q4.shape[0] > 0:
|
|
self.children.append(
|
|
QuadTree(
|
|
data_q4,
|
|
id + "3",
|
|
depth - 1,
|
|
do_split=do_split,
|
|
)
|
|
)
|
|
|
|
def unwrap(self):
|
|
if len(self.children) == 0:
|
|
return {self.id: [self.mins, self.maxs, self.data.copy()]}
|
|
else:
|
|
d = dict()
|
|
for child in self.children:
|
|
d.update(child.unwrap())
|
|
return d
|
|
|
|
|
|
def extract(qt, name_new_column):
|
|
cluster = qt.unwrap()
|
|
boundaries, data = {}, []
|
|
for i, (id, vs) in zip(np.arange(len(cluster)), cluster.items()):
|
|
(min_lat, min_lon), (max_lat, max_lon), points = vs
|
|
points[name_new_column] = int(i)
|
|
data.append(points)
|
|
boundaries[i] = (
|
|
float(min_lat),
|
|
float(min_lon),
|
|
float(max_lat),
|
|
float(max_lon),
|
|
points["latitude"].mean(),
|
|
points["longitude"].mean(),
|
|
)
|
|
|
|
data = pd.concat(data)
|
|
return boundaries, data
|
|
|
|
|
|
def vizu(name_new_column, df_train, boundaries, do_split):
|
|
plt.hist(df_train[name_new_column], bins=len(boundaries))
|
|
plt.xlabel("Cluster ID")
|
|
plt.ylabel("Number of images")
|
|
plt.title("Cluster distribution")
|
|
plt.yscale("log")
|
|
plt.ylim(10, do_split)
|
|
plt.savefig(f"{name_new_column}_distrib.png")
|
|
plt.clf()
|
|
|
|
plt.scatter(
|
|
df_train["longitude"].to_numpy(),
|
|
df_train["latitude"].to_numpy(),
|
|
c=np.random.permutation(len(boundaries))[df_train[name_new_column].to_numpy()],
|
|
cmap="tab20",
|
|
s=0.1,
|
|
alpha=0.5,
|
|
)
|
|
plt.xlabel("Longitude")
|
|
plt.ylabel("Latitude")
|
|
plt.title("Quadtree map")
|
|
plt.savefig(f"{name_new_column}_map.png")
|
|
|
|
|
|
@hydra.main(
|
|
config_path="../configs/scripts",
|
|
config_name="enrich-metadata-quadtree",
|
|
version_base=None,
|
|
)
|
|
def main(cfg):
|
|
|
|
data_path = join(cfg.data_dir, "osv5m")
|
|
name_new_column = f"adaptive_quadtree_{cfg.depth}_{cfg.do_split}"
|
|
|
|
|
|
train_fp = join(data_path, f"train.csv")
|
|
df_train = pd.read_csv(train_fp)
|
|
|
|
qt = QuadTree(df_train, depth=cfg.depth, do_split=cfg.do_split)
|
|
boundaries, df_train = extract(qt, name_new_column)
|
|
|
|
vizu(name_new_column, df_train, boundaries, cfg.do_split)
|
|
|
|
|
|
boundaries = pd.DataFrame.from_dict(
|
|
boundaries,
|
|
orient="index",
|
|
columns=["min_lat", "min_lon", "max_lat", "max_lon", "mean_lat", "mean_lon"],
|
|
)
|
|
boundaries.to_csv(f"{name_new_column}.csv", index_label="cluster_id")
|
|
|
|
|
|
test_fp = join(data_path, f"test.csv")
|
|
df_test = pd.read_csv(test_fp)
|
|
|
|
above_lat = np.expand_dims(df_test["latitude"].to_numpy(), -1) > np.expand_dims(
|
|
boundaries["min_lat"].to_numpy(), 0
|
|
)
|
|
below_lat = np.expand_dims(df_test["latitude"].to_numpy(), -1) < np.expand_dims(
|
|
boundaries["max_lat"].to_numpy(), 0
|
|
)
|
|
above_lon = np.expand_dims(df_test["longitude"].to_numpy(), -1) > np.expand_dims(
|
|
boundaries["min_lon"].to_numpy(), 0
|
|
)
|
|
below_lon = np.expand_dims(df_test["longitude"].to_numpy(), -1) < np.expand_dims(
|
|
boundaries["max_lon"].to_numpy(), 0
|
|
)
|
|
|
|
mask = np.logical_and(
|
|
np.logical_and(above_lat, below_lat), np.logical_and(above_lon, below_lon)
|
|
)
|
|
|
|
df_test[name_new_column] = np.argmax(mask, axis=1)
|
|
|
|
|
|
lat = torch.tensor(boundaries["mean_lat"])
|
|
lon = torch.tensor(boundaries["mean_lon"])
|
|
coord = torch.stack([lat / 90, lon / 180], dim=-1)
|
|
torch.save(
|
|
coord,
|
|
join(
|
|
data_path, f"index_to_gps_adaptive_quadtree_{cfg.depth}_{cfg.do_split}.pt"
|
|
),
|
|
)
|
|
|
|
|
|
if cfg.overwrite_csv:
|
|
df_train.to_csv(train_fp, index=False)
|
|
df_test.to_csv(test_fp, index=False)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|