tronskel's picture
Upload 46 files
2875866 verified
raw
history blame
11.4 kB
import streamlit as st
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import datetime
import pandas as pd
# Adjust the system path to find project modules
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
sys.path.append(project_root)
from src.modules.module2_relevancy.relevance_analyzer import EnhancedRelevanceAnalyzer
from groq_client import GroqClient
from file_processing import extract_text_from_file
from src.modules.module3_compare.model import QuestionSimilarityModel
from src.modules.module4_bias.bias import screen_questions
from src.modules.module1_question_generation.project_controller import Project
from src.modules.module1_question_generation.tool_controller import *
DATASET_DIR = "dataset"
project_control = Project()
if 'page' not in st.session_state:
st.session_state.page = 'main'
if ('accuracy_history' not in st.session_state):
st.session_state['accuracy_history'] = {
"DSA" : [],
"Technical" : [],
"Behaviour": []
}
def main():
if st.session_state.page == 'main':
sidebar()
if ('current_project' in st.session_state):
if (st.session_state['current_project']['project_name'] == 'default'):
st.title("Interview Question Generator & Analyzer")
main_page()
else:
st.subheader('No project selected')
elif st.session_state.page == 'configure':
configure_page()
def sidebar():
st.sidebar.title("Project Options")
project_action = st.sidebar.selectbox("Select Action", ["Open Existing Project", "Create New Project"])
if project_action == "Create New Project":
new_project_name = st.sidebar.text_input("Enter Project Name")
print('Title: ', new_project_name)
if st.sidebar.button("Create Project") and new_project_name:
if new_project_name in project_control.list_projects():
st.sidebar.error("Project with this name already exists.")
else:
project_data = project_control.initialize_project(new_project_name)
st.session_state["current_project"] = project_data
st.success(f"Project '{new_project_name}' created successfully!")
elif project_action == "Open Existing Project":
existing_projects = project_control.list_projects()
selected_project = st.sidebar.selectbox("Select Project", existing_projects)
if st.sidebar.button("Open Project") and selected_project:
project_data = project_control.load_project(selected_project)
if project_data:
st.session_state["current_project"] = project_data
else:
st.sidebar.error("Failed to load project_control.")
if ('current_project' in st.session_state and st.sidebar.button('Configure Project')):
st.session_state.page = 'configure'
def main_page():
client = GroqClient()
analyzer = EnhancedRelevanceAnalyzer()
similarity_model = QuestionSimilarityModel('dataset/leetcode_dataset.csv')
project = st.session_state["current_project"]
st.subheader('Project: ', project['project_name'])
job_role = st.text_input("Enter Job Role")
question_type = st.selectbox("Type of questions", ["DSA", "Technical", "Behaviour"])
jd_file = st.file_uploader("Upload Job Description (PDF/DOCX)", type=["pdf", "docx"])
if jd_file and job_role and question_type and st.button('Get questions') :
with st.spinner("Analyzing Job Description..."):
jd_text = extract_text_from_file(jd_file)
if not analyzer.check_title_jd_match(job_role, jd_text):
st.error("⚠️ Job description doesn't match the job title! Upload a relevant JD.")
st.stop()
questions = client.generate_questions(job_role, jd_text, question_type)
# Deterministic
d_results = verify_deterministic_assertions(questions, project["assertions"])
df_results = pd.DataFrame(list(d_results.items()), columns=["Assertion Type", "Result"])
st.table(df_results)
question_lines = [q.strip() for q in questions.split('\n') if q.strip()]
if question_lines and not question_lines[0][0].isdigit():
question_lines = question_lines[1:]
# first_five_questions = question_lines[:10]
# remaining_questions = question_lines[5:15]
scores = []
if (question_type == "DSA"):
similarity_results = similarity_model.check_similarity(question_lines)
scores = similarity_results
st.subheader("DSA questions with similarity analysis")
score = 0
for i, (question, result) in enumerate(zip(question_lines, similarity_results), 1):
st.write(f"{i}. {question}")
score += result["relevance_score"]
with st.expander(f"Similarity Analysis for Question {i}"):
st.write(f"Similarity Score: {result['relevance_score']:.2f}")
st.write(f"Best Match: {result['best_match']['title']}")
st.write(f"Difficulty: {result['best_match']['difficulty']}")
if result['matched_sources']:
st.write("\nSimilar Questions:")
for source in result['matched_sources']:
st.write(f"- {source['title']} (Difficulty: {source['difficulty']})")
overall_similarity = score / len(question_lines)
st.metric("Overall Relevance", f"{overall_similarity*100:.1f}%")
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
project['accuracy_history'][question_type].append((timestamp, overall_similarity))
# if (question_type == "Technical" or question_type == "Behaviour"):
if (question_type == "Technical"):
for q in question_lines:
st.write(f"- {q}")
scores = analyzer.calculate_question_scores(jd_text, question_lines)
avg_score = sum(scores) / len(scores)
half_avg = avg_score / 1.25
count_above_half = sum(1 for s in scores if s > half_avg)
overall_relevance = (count_above_half / len(scores)) * 100
st.subheader("Analysis Results")
st.metric("Overall Relevance", f"{overall_relevance:.1f}%")
# Store accuracy with timestamp
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
project['accuracy_history'][question_type].append((timestamp, overall_relevance))
if question_type == "Behaviour":
valid_bias_questions, invalid_bias_questions, bias_accuracy, validity = screen_questions(question_lines)
for i, q in enumerate(question_lines):
st.write(f"- {f'[Invalid {validity[i]:.2f}]' if validity[i] == 1 else f'[ Valid {validity[i]:.2f}]'} {q}")
st.metric("Bias Accuracy", f"{bias_accuracy * 100:.1f}%")
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
project['accuracy_history'][question_type].append((timestamp, bias_accuracy))
# Plot accuracy history
if project['accuracy_history']:
st.subheader("Accuracy History")
timestamps, accuracies = zip(*project['accuracy_history'][question_type])
fig, ax = plt.subplots()
ax.plot(timestamps, accuracies, marker='o')
ax.set_xlabel("Timestamp")
ax.set_ylabel("Overall Relevance (%)")
ax.set_title("Relevance Over Time")
plt.xticks(rotation=45)
st.pyplot(fig)
export_data = []
for i, (question, score) in enumerate(zip(question_lines, scores), 1):
export_data.append(f"Q{i}. {question}")
if (question_type == "DSA"):
export_data.append(f"Overall Score: {score['relevance_score']}")
export_data.append(f"Best Match: {score['best_match']['title']}")
else:
export_data.append(f"Overall Score: {score}")
export_data.append("")
# for i, (question, score) in enumerate(zip(remaining_questions, scores[5:15]), 5):
# export_data.append(f"Q{i}. {question}")
# export_data.append("")
project_control.save_project(project["project_name"], project)
st.download_button(
"Download Questions with Analysis",
f"Job Role: {job_role}\n\n\n" + "\n".join(export_data),
file_name=f"{job_role.replace(' ', '_')}_questions_analysis.txt",
mime="text/plain"
)
def configure_page():
st.title("Project Configuration")
project = st.session_state['current_project']
assertion_type = st.selectbox("Select Assertion Type", ["deterministic", "factual", "misc"])
if assertion_type == "deterministic":
check_type = st.selectbox("Select Deterministic Check Type", ["regex", "json_format", "contains", "not-contains"])
check_value = st.text_area("Enter pattern")
if st.button("Add Deterministic Assertion") and check_value:
assertion_data = {
"check_type": check_type,
"value": check_value,
}
project["assertions"]["deterministic"].append(assertion_data)
st.success("Deterministic Assertion added.")
elif assertion_type == "factual":
fact = st.file_uploader("Provide knowledgebase for factual assertion", type=["pdf", "docx"])
if st.button("Add") and fact:
project_id = project["project_name"]
file_extension = os.path.splitext(fact.name)[1]
# current working dir
saved_path = os.path.join(os.getcwd(), DATASET_DIR, f"{project_id}{file_extension}")
with open(saved_path, "wb") as f:
f.write(fact.getbuffer())
project["assertions"]["knowledgebase"] = saved_path
st.success("Factual Assertion added and file saved.")
elif assertion_type == "misc":
new_assertion = st.text_input("Add Miscellaneous Assertion")
if st.button("Add Miscellaneous Assertion") and new_assertion:
project["assertions"]["misc"].append(new_assertion)
if (st.checkbox('sql-only')):
project["assertions"]["sql-only"] = True
if (st.checkbox('json-only')):
project["assertions"]["json-only"] = True
if st.button("Save Assertion"):
project_control.save_project(project["project_name"], project)
st.success(f"Assertion saved")
if st.button("Go Back"):
st.session_state.page = 'main'
if __name__ == "__main__":
main()