Spaces:
Sleeping
Sleeping
File size: 11,509 Bytes
be398ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# core/ingestion/ingestion_service.py
import os
from typing import List, Optional, Callable
from utils.logger import logger
from qdrant_client import QdrantClient
from core.data_processing.text_processor import TextProcessor
from core.data_processing.audio_processor import AudioProcessor
from core.data_processing.image_processor import ImageProcessor
from core.embeddings.text_embedding_model import TextEmbeddingModel
from core.embeddings.image_embedding_model import ImageEmbeddingModel
from core.embeddings.audio_embedding_model import AudioEmbeddingModel
from core.retrieval.vector_db_manager import VectorDBManager
class IngestionService:
def __init__(self, client: QdrantClient):
logger.info("Initializing IngestionService (Stateless)...")
self.client = client
self.text_processor = TextProcessor()
self.image_processor = ImageProcessor()
self.audio_processor = AudioProcessor()
self.text_embedder = TextEmbeddingModel()
self.image_embedder = ImageEmbeddingModel()
self.audio_embedder = AudioEmbeddingModel()
text_embedding_dim = self.text_embedder.model.get_sentence_embedding_dimension()
self.text_db_manager = VectorDBManager(
client=self.client,
collection_name="text_collection",
embedding_dim=text_embedding_dim
)
image_embedding_dim = self.image_embedder.model.config.hidden_size
self.image_vector_db_manager = VectorDBManager(
client=self.client,
collection_name="image_collection",
embedding_dim=image_embedding_dim
)
audio_embedding_dim = self.audio_embedder.model.config.projection_dim
self.audio_vector_db_manager = VectorDBManager(
client=self.client,
collection_name="audio_collection",
embedding_dim=audio_embedding_dim
)
logger.info("IngestionService initialized successfully.")
def ingest_files(self, file_paths: List[str]):
'''Ingest files without displaying progress bar'''
return self.ingest_files_with_progress(file_paths, None)
def ingest_files_with_progress(self, file_paths: List[str], progress_callback: Optional[Callable] = None):
"""
Turn on progress bar for tracking
"""
logger.info(f"Starting ingestion for {len(file_paths)} files...")
# Kiểm tra và xử lý progress_callback an toàn
def safe_progress(value, desc=""):
try:
if progress_callback is not None:
progress_callback(value, desc=desc)
except Exception as e:
logger.warning(f"Progress callback error: {e}")
safe_progress(0.4, desc="Starting file processing...")
all_chunks_to_process = []
# 1. Walk through files to split chunks
for i, file_path in enumerate(file_paths):
try:
base_progress = 0.4 + (i / len(file_paths)) * 0.3 # 40% -> 70%
file_name = os.path.basename(file_path)
safe_progress(base_progress, desc=f"Processing file {i+1}/{len(file_paths)}: {file_name}")
file_ext = os.path.splitext(file_path)[1].lower()
chunks = []
safe_progress(base_progress + 0.01, desc=f"Reading {file_name}...")
if file_ext in ['.txt']:
chunks = self.text_processor.process(file_path)
elif file_ext in ['.png', '.jpg', '.jpeg', '.bmp', '.gif']:
chunks = self.image_processor.process(file_path)
elif file_ext in ['.wav', '.mp3']:
chunks = self.audio_processor.process(file_path)
else:
logger.warning(f"Unsupported file type '{file_ext}' for file: {file_path}. Skipping.")
continue
# Kiểm tra chunks có hợp lệ không
if not chunks or len(chunks) == 0:
logger.warning(f"No chunks generated from file: {file_path}")
continue
safe_progress(base_progress + 0.02, desc=f"Generated {len(chunks)} chunks from {file_name}")
all_chunks_to_process.extend(chunks)
except Exception as e:
logger.error(f"Error processing file {file_path}: {e}")
continue
if not all_chunks_to_process:
logger.warning("No processable chunks were generated from the provided files.")
safe_progress(1.0, desc="No chunks to process")
return
logger.info(f"Generated {len(all_chunks_to_process)} total chunks. Now generating embeddings...")
safe_progress(0.7, desc=f"Generated {len(all_chunks_to_process)} chunks. Starting embeddings...")
# 2. Create embeddings and add to batch
text_embeddings_batch, text_metadatas_batch = [], []
audio_embeddings_batch, audio_metadatas_batch = [], []
image_embeddings_batch, image_metadatas_batch = [], []
BATCH_SIZE = 32
for i, chunk_data in enumerate(all_chunks_to_process):
try:
base_progress = 0.7 + (i / len(all_chunks_to_process)) * 0.25 # 70% -> 95%
# Kiểm tra chunk_data có hợp lệ không
if not chunk_data or 'metadata' not in chunk_data or 'content' not in chunk_data:
logger.warning(f"Invalid chunk data at index {i}, skipping...")
continue
chunk_type = chunk_data['metadata'].get('type', 'unknown')
content = chunk_data['content']
chunk_id = chunk_data['metadata'].get('chunk_id', f'chunk_{i}')
# Kiểm tra content có hợp lệ không
if not content:
logger.warning(f"Empty content for chunk {chunk_id}, skipping...")
continue
safe_progress(base_progress, desc=f"Processing chunk {i+1}/{len(all_chunks_to_process)} ({chunk_type})")
if chunk_type == "text":
safe_progress(base_progress + 0.001, desc=f"Creating text embedding for chunk {i+1}")
embeddings = self.text_embedder.get_embeddings([content])
if embeddings and len(embeddings) > 0:
text_embeddings_batch.append(embeddings[0])
text_metadatas_batch.append(chunk_data)
else:
logger.warning(f"Failed to generate text embedding for chunk {chunk_id}")
elif chunk_type == "audio":
safe_progress(base_progress + 0.001, desc=f"Creating audio embedding for chunk {i+1}")
embeddings = self.audio_embedder.get_embeddings([content])
if embeddings and len(embeddings) > 0:
audio_embeddings_batch.append(embeddings[0])
audio_metadatas_batch.append(chunk_data)
else:
logger.warning(f"Failed to generate audio embedding for chunk {chunk_id}")
elif chunk_type == "image":
safe_progress(base_progress + 0.001, desc=f"Creating image embedding for chunk {i+1}")
embeddings = self.image_embedder.get_embeddings([content])
if embeddings and len(embeddings) > 0:
image_embeddings_batch.append(embeddings[0])
image_metadatas_batch.append(chunk_data)
else:
logger.warning(f"Failed to generate image embedding for chunk {chunk_id}")
# add batch when reaching BATCH_SIZE
if len(text_embeddings_batch) >= BATCH_SIZE:
safe_progress(base_progress + 0.002, desc=f"Saving batch of {len(text_embeddings_batch)} text embeddings...")
self.text_db_manager.add_vectors(text_embeddings_batch, text_metadatas_batch)
text_embeddings_batch, text_metadatas_batch = [], []
if len(audio_embeddings_batch) >= BATCH_SIZE:
safe_progress(base_progress + 0.002, desc=f"Saving batch of {len(audio_embeddings_batch)} audio embeddings...")
self.audio_vector_db_manager.add_vectors(audio_embeddings_batch, audio_metadatas_batch)
audio_embeddings_batch, audio_metadatas_batch = [], []
if len(image_embeddings_batch) >= BATCH_SIZE:
safe_progress(base_progress + 0.002, desc=f"Saving batch of {len(image_embeddings_batch)} image embeddings...")
self.image_vector_db_manager.add_vectors(image_embeddings_batch, image_metadatas_batch)
image_embeddings_batch, image_metadatas_batch = [], []
except Exception as e:
logger.error(f"Error ingesting chunk {i}: {e}")
continue
safe_progress(0.95, desc="Saving final batches...")
# adding maintaining embeddings
final_operations = []
if text_embeddings_batch:
final_operations.append(("text", len(text_embeddings_batch)))
if audio_embeddings_batch:
final_operations.append(("audio", len(audio_embeddings_batch)))
if image_embeddings_batch:
final_operations.append(("image", len(image_embeddings_batch)))
# Tránh chia cho 0
total_operations = len(final_operations)
if total_operations == 0:
safe_progress(1.0, desc="No final batches to save")
else:
for i, (batch_type, count) in enumerate(final_operations):
try:
current_progress = 0.95 + (i / total_operations) * 0.04 # 95% -> 99%
if batch_type == "text" and text_embeddings_batch:
safe_progress(current_progress, desc=f"Saving final {count} text embeddings...")
self.text_db_manager.add_vectors(text_embeddings_batch, text_metadatas_batch)
elif batch_type == "audio" and audio_embeddings_batch:
safe_progress(current_progress, desc=f"Saving final {count} audio embeddings...")
self.audio_vector_db_manager.add_vectors(audio_embeddings_batch, audio_metadatas_batch)
elif batch_type == "image" and image_embeddings_batch:
safe_progress(current_progress, desc=f"Saving final {count} image embeddings...")
self.image_vector_db_manager.add_vectors(image_embeddings_batch, image_metadatas_batch)
except Exception as e:
logger.error(f"Error saving final batch {batch_type}: {e}")
safe_progress(1.0, desc=f"✅ Successfully ingested {len(file_paths)} files with {len(all_chunks_to_process)} chunks!")
logger.success(f"Successfully completed ingestion for {len(file_paths)} files.") |