Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import cv2 | |
import numpy | |
import gradio as gr | |
import spaces | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from basicsr.utils.download_util import load_file_from_url | |
from realesrgan import RealESRGANer | |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact | |
# -------------------- | |
# Global (CPU-only data; KHÔNG chạm CUDA ở đây) | |
# -------------------- | |
last_file = None | |
img_mode = "RGBA" | |
DEVICE = "cpu" # set trong gpu_startup() | |
USE_HALF = False # set trong gpu_startup() | |
# cache cho các upsampler đã khởi tạo | |
UPSAMPLER_CACHE = {} # key: (model_name, denoise_strength, DEVICE, USE_HALF) | |
GFPGAN_FACE_ENHANCER = {} # key: (outscale, DEVICE, USE_HALF) | |
# -------------------- | |
# ZeroGPU: cấp GPU ngay khi khởi động | |
# -------------------- | |
def gpu_startup(): | |
""" | |
Hàm này chạy ngay khi Space bật trên ZeroGPU. | |
Chỉ ở đây mới 'đụng' tới torch/cuda. | |
""" | |
global DEVICE, USE_HALF | |
import torch | |
has_cuda = torch.cuda.is_available() | |
DEVICE = "cuda" if has_cuda else "cpu" | |
# half precision chỉ an toàn khi có CUDA | |
USE_HALF = bool(has_cuda) | |
print(f"[startup] CUDA available: {has_cuda}, device={DEVICE}, half={USE_HALF}") | |
# -------------------- | |
# Utils | |
# -------------------- | |
def rnd_string(x): | |
chars = "abcdefghijklmnopqrstuvwxyz_0123456789" | |
return "".join(random.choice(chars) for _ in range(x)) | |
def has_transparency(img): | |
if img.info.get("transparency", None) is not None: | |
return True | |
if img.mode == "P": | |
transparent = img.info.get("transparency", -1) | |
for _, index in img.getcolors(): | |
if index == transparent: | |
return True | |
elif img.mode == "RGBA": | |
extrema = img.getextrema() | |
if extrema[3][0] < 255: | |
return True | |
return False | |
def image_properties(img): | |
global img_mode | |
if img: | |
if has_transparency(img): | |
img_mode = "RGBA" | |
else: | |
img_mode = "RGB" | |
return f"Resolution: Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}" | |
def reset(): | |
global last_file | |
if last_file: | |
try: | |
print(f"Deleting {last_file} ...") | |
os.remove(last_file) | |
except Exception as e: | |
print("Delete error:", e) | |
finally: | |
last_file = None | |
return gr.update(value=None), gr.update(value=None) | |
# -------------------- | |
# Model builder (không gọi CUDA ở ngoài startup; mọi thứ phụ thuộc DEVICE/USE_HALF) | |
# -------------------- | |
def get_model_and_paths(model_name, denoise_strength): | |
"""Chuẩn bị kiến trúc model + đường dẫn trọng số + dni_weight (nếu cần).""" | |
if model_name in ('RealESRGAN_x4plus', 'RealESRNet_x4plus'): | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) | |
netscale = 4 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'] \ | |
if model_name == 'RealESRGAN_x4plus' else \ | |
['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth'] | |
elif model_name == 'RealESRGAN_x4plus_anime_6B': | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) | |
netscale = 4 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth'] | |
elif model_name == 'RealESRGAN_x2plus': | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) | |
netscale = 2 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth'] | |
elif model_name == 'realesr-general-x4v3': | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
netscale = 4 | |
file_url = [ | |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth', | |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth' | |
] | |
else: | |
raise ValueError(f"Unsupported model: {model_name}") | |
# tải trọng số (nếu chưa có) | |
model_path = os.path.join('weights', model_name + '.pth') | |
if not os.path.isfile(model_path): | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
for url in file_url: | |
model_path = load_file_from_url(url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), | |
progress=True, file_name=None) | |
# dni (chỉ riêng general-x4v3) | |
dni_weight = None | |
if model_name == 'realesr-general-x4v3' and denoise_strength != 1: | |
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3') | |
model_path = [model_path, wdn_model_path] | |
dni_weight = [denoise_strength, 1 - denoise_strength] | |
return model, netscale, model_path, dni_weight | |
def get_upsampler(model_name, denoise_strength): | |
"""Khởi tạo/cached RealESRGANer theo device & half hiện hành.""" | |
key = (model_name, float(denoise_strength), DEVICE, USE_HALF) | |
if key in UPSAMPLER_CACHE: | |
return UPSAMPLER_CACHE[key] | |
model, netscale, model_path, dni_weight = get_model_and_paths(model_name, denoise_strength) | |
# Cấu hình theo thiết bị | |
# - half=True khi GPU; False khi CPU | |
# - gpu_id=0 khi GPU; None khi CPU | |
half_flag = bool(USE_HALF) | |
gpu_id = 0 if DEVICE == "cuda" else None | |
upsampler = RealESRGANer( | |
scale=netscale, | |
model_path=model_path, | |
dni_weight=dni_weight, | |
model=model, | |
tile=0, | |
tile_pad=10, | |
pre_pad=10, | |
half=half_flag, | |
gpu_id=gpu_id | |
) | |
UPSAMPLER_CACHE[key] = upsampler | |
return upsampler | |
def get_face_enhancer(upsampler, outscale): | |
key = (int(outscale), DEVICE, USE_HALF) | |
if key in GFPGAN_FACE_ENHANCER: | |
return GFPGAN_FACE_ENHANCER[key] | |
from gfpgan import GFPGANer | |
face_enhancer = GFPGANer( | |
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth', | |
upscale=int(outscale), | |
arch='clean', | |
channel_multiplier=2, | |
bg_upsampler=upsampler | |
) | |
GFPGAN_FACE_ENHANCER[key] = face_enhancer | |
return face_enhancer | |
# -------------------- | |
# Inference (đánh dấu @spaces.GPU vì có thể chạy trên GPU) | |
# -------------------- | |
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale): | |
"""Real-ESRGAN restore/upscale.""" | |
if not img: | |
return | |
upsampler = get_upsampler(model_name, denoise_strength) | |
# PIL -> cv2 BGRA | |
cv_img = numpy.array(img) | |
img_bgra = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA) | |
try: | |
if face_enhance: | |
face_enhancer = get_face_enhancer(upsampler, outscale) | |
_, _, output = face_enhancer.enhance( | |
img_bgra, has_aligned=False, only_center_face=False, paste_back=True | |
) | |
else: | |
output, _ = upsampler.enhance(img_bgra, outscale=int(outscale)) | |
except RuntimeError as error: | |
# Gợi ý tự động giảm tile nếu OOM | |
print('Error', error) | |
return None | |
else: | |
extension = 'png' if img_mode == 'RGBA' else 'jpg' | |
out_filename = f"output_{rnd_string(8)}.{extension}" | |
cv2.imwrite(out_filename, output) | |
global last_file | |
last_file = out_filename | |
return out_filename | |
# -------------------- | |
# UI | |
# -------------------- | |
def main(): | |
with gr.Blocks(title="Real-ESRGAN Gradio Demo", theme="ParityError/Interstellar") as demo: | |
gr.Markdown("## Image Upscaler") | |
with gr.Accordion("Upscaling option"): | |
with gr.Row(): | |
model_name = gr.Dropdown( | |
label="Upscaler model", | |
choices=[ | |
"RealESRGAN_x4plus", | |
"RealESRNet_x4plus", | |
"RealESRGAN_x4plus_anime_6B", | |
"RealESRGAN_x2plus", | |
"realesr-general-x4v3", | |
], | |
value="RealESRGAN_x4plus_anime_6B", | |
show_label=True | |
) | |
denoise_strength = gr.Slider(label="Denoise Strength", minimum=0, maximum=1, step=0.1, value=0.5) | |
outscale = gr.Slider(label="Resolution upscale", minimum=1, maximum=6, step=1, value=4, show_label=True) | |
face_enhance = gr.Checkbox(label="Face Enhancement (GFPGAN)") | |
with gr.Row(): | |
with gr.Group(): | |
input_image = gr.Image(label="Input Image", type="pil", image_mode="RGBA") | |
input_image_properties = gr.Textbox(label="Image Properties", max_lines=1) | |
output_image = gr.Image(label="Output Image", image_mode="RGBA") | |
with gr.Row(): | |
reset_btn = gr.Button("Remove images") | |
restore_btn = gr.Button("Upscale") | |
input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties) | |
restore_btn.click(fn=realesrgan, | |
inputs=[input_image, model_name, denoise_strength, face_enhance, outscale], | |
outputs=output_image) | |
reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image]) | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |
if __name__ == "__main__": | |
# Gọi hàm startup để ZeroGPU cấp GPU ngay khi Space boot | |
gpu_startup() | |
main() |