Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,149 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
import cv2
|
4 |
-
import numpy
|
5 |
import os
|
6 |
import random
|
|
|
|
|
|
|
|
|
|
|
7 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
8 |
from basicsr.utils.download_util import load_file_from_url
|
9 |
-
|
10 |
from realesrgan import RealESRGANer
|
11 |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
12 |
|
13 |
-
|
|
|
|
|
14 |
last_file = None
|
15 |
img_mode = "RGBA"
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
@spaces.GPU
|
18 |
-
def
|
19 |
-
"""Real-ESRGAN function to restore (and upscale) images.
|
20 |
"""
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
31 |
netscale = 4
|
32 |
-
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.
|
33 |
-
|
|
|
|
|
34 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
35 |
netscale = 4
|
36 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
|
37 |
-
elif model_name == 'RealESRGAN_x2plus':
|
38 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
39 |
netscale = 2
|
40 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
|
41 |
-
elif model_name == 'realesr-general-x4v3':
|
42 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
43 |
netscale = 4
|
44 |
file_url = [
|
45 |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
|
46 |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
|
47 |
]
|
|
|
|
|
48 |
|
49 |
-
#
|
50 |
model_path = os.path.join('weights', model_name + '.pth')
|
51 |
if not os.path.isfile(model_path):
|
52 |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
53 |
for url in file_url:
|
54 |
-
|
55 |
-
|
56 |
-
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
|
57 |
|
58 |
-
#
|
59 |
dni_weight = None
|
60 |
if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
|
61 |
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
|
62 |
model_path = [model_path, wdn_model_path]
|
63 |
dni_weight = [denoise_strength, 1 - denoise_strength]
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
upsampler = RealESRGANer(
|
67 |
scale=netscale,
|
68 |
model_path=model_path,
|
@@ -71,127 +152,87 @@ def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
|
71 |
tile=0,
|
72 |
tile_pad=10,
|
73 |
pre_pad=10,
|
74 |
-
half=
|
75 |
-
gpu_id=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
#
|
79 |
-
if face_enhance:
|
80 |
-
from gfpgan import GFPGANer
|
81 |
-
face_enhancer = GFPGANer(
|
82 |
-
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
|
83 |
-
upscale=outscale,
|
84 |
-
arch='clean',
|
85 |
-
channel_multiplier=2,
|
86 |
-
bg_upsampler=upsampler)
|
87 |
-
|
88 |
-
# Convert the input PIL image to cv2 image, so that it can be processed by realesrgan
|
89 |
cv_img = numpy.array(img)
|
90 |
-
|
91 |
|
92 |
-
# Apply restoration
|
93 |
try:
|
94 |
if face_enhance:
|
95 |
-
|
|
|
|
|
|
|
96 |
else:
|
97 |
-
output, _ = upsampler.enhance(
|
98 |
except RuntimeError as error:
|
|
|
99 |
print('Error', error)
|
100 |
-
|
101 |
else:
|
102 |
-
|
103 |
-
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
104 |
-
extension = 'png'
|
105 |
-
else:
|
106 |
-
extension = 'jpg'
|
107 |
-
|
108 |
out_filename = f"output_{rnd_string(8)}.{extension}"
|
109 |
cv2.imwrite(out_filename, output)
|
110 |
global last_file
|
111 |
last_file = out_filename
|
112 |
return out_filename
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
"""
|
118 |
-
characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
|
119 |
-
result = "".join((random.choice(characters)) for i in range(x))
|
120 |
-
return result
|
121 |
-
|
122 |
-
|
123 |
-
def reset():
|
124 |
-
"""Resets the Image components of the Gradio interface and deletes
|
125 |
-
the last processed image
|
126 |
-
"""
|
127 |
-
global last_file
|
128 |
-
if last_file:
|
129 |
-
print(f"Deleting {last_file} ...")
|
130 |
-
os.remove(last_file)
|
131 |
-
last_file = None
|
132 |
-
return gr.update(value=None), gr.update(value=None)
|
133 |
-
|
134 |
-
|
135 |
-
def has_transparency(img):
|
136 |
-
"""This function works by first checking to see if a "transparency" property is defined
|
137 |
-
in the image's info -- if so, we return "True". Then, if the image is using indexed colors
|
138 |
-
(such as in GIFs), it gets the index of the transparent color in the palette
|
139 |
-
(img.info.get("transparency", -1)) and checks if it's used anywhere in the canvas
|
140 |
-
(img.getcolors()). If the image is in RGBA mode, then presumably it has transparency in
|
141 |
-
it, but it double-checks by getting the minimum and maximum values of every color channel
|
142 |
-
(img.getextrema()), and checks if the alpha channel's smallest value falls below 255.
|
143 |
-
https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
|
144 |
-
"""
|
145 |
-
if img.info.get("transparency", None) is not None:
|
146 |
-
return True
|
147 |
-
if img.mode == "P":
|
148 |
-
transparent = img.info.get("transparency", -1)
|
149 |
-
for _, index in img.getcolors():
|
150 |
-
if index == transparent:
|
151 |
-
return True
|
152 |
-
elif img.mode == "RGBA":
|
153 |
-
extrema = img.getextrema()
|
154 |
-
if extrema[3][0] < 255:
|
155 |
-
return True
|
156 |
-
return False
|
157 |
-
|
158 |
-
|
159 |
-
def image_properties(img):
|
160 |
-
"""Returns the dimensions (width and height) and color mode of the input image and
|
161 |
-
also sets the global img_mode variable to be used by the realesrgan function
|
162 |
-
"""
|
163 |
-
global img_mode
|
164 |
-
if img:
|
165 |
-
if has_transparency(img):
|
166 |
-
img_mode = "RGBA"
|
167 |
-
else:
|
168 |
-
img_mode = "RGB"
|
169 |
-
properties = f"Resolution: Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
|
170 |
-
return properties
|
171 |
-
|
172 |
-
|
173 |
def main():
|
174 |
-
# Gradio Interface
|
175 |
with gr.Blocks(title="Real-ESRGAN Gradio Demo", theme="ParityError/Interstellar") as demo:
|
176 |
-
|
177 |
-
gr.Markdown(
|
178 |
-
""" Image Upscaler
|
179 |
-
"""
|
180 |
-
)
|
181 |
|
182 |
with gr.Accordion("Upscaling option"):
|
183 |
with gr.Row():
|
184 |
-
model_name = gr.Dropdown(
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
193 |
)
|
194 |
-
|
|
|
|
|
|
|
195 |
with gr.Row():
|
196 |
with gr.Group():
|
197 |
input_image = gr.Image(label="Input Image", type="pil", image_mode="RGBA")
|
@@ -201,22 +242,15 @@ def main():
|
|
201 |
reset_btn = gr.Button("Remove images")
|
202 |
restore_btn = gr.Button("Upscale")
|
203 |
|
204 |
-
# Event listeners:
|
205 |
input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
|
206 |
restore_btn.click(fn=realesrgan,
|
207 |
inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
|
208 |
outputs=output_image)
|
209 |
reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])
|
210 |
-
# reset_btn.click(None, inputs=[], outputs=[input_image], _js="() => (null)\n")
|
211 |
-
# Undocumented method to clear a component's value using Javascript
|
212 |
-
|
213 |
-
gr.Markdown(
|
214 |
-
"""
|
215 |
-
"""
|
216 |
-
)
|
217 |
-
|
218 |
-
demo.launch()
|
219 |
|
|
|
220 |
|
221 |
if __name__ == "__main__":
|
|
|
|
|
222 |
main()
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import random
|
3 |
+
import cv2
|
4 |
+
import numpy
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
|
8 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
9 |
from basicsr.utils.download_util import load_file_from_url
|
|
|
10 |
from realesrgan import RealESRGANer
|
11 |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
12 |
|
13 |
+
# --------------------
|
14 |
+
# Global (CPU-only data; KHÔNG chạm CUDA ở đây)
|
15 |
+
# --------------------
|
16 |
last_file = None
|
17 |
img_mode = "RGBA"
|
18 |
|
19 |
+
DEVICE = "cpu" # set trong gpu_startup()
|
20 |
+
USE_HALF = False # set trong gpu_startup()
|
21 |
+
|
22 |
+
# cache cho các upsampler đã khởi tạo
|
23 |
+
UPSAMPLER_CACHE = {} # key: (model_name, denoise_strength, DEVICE, USE_HALF)
|
24 |
+
GFPGAN_FACE_ENHANCER = {} # key: (outscale, DEVICE, USE_HALF)
|
25 |
+
|
26 |
+
# --------------------
|
27 |
+
# ZeroGPU: cấp GPU ngay khi khởi động
|
28 |
+
# --------------------
|
29 |
@spaces.GPU
|
30 |
+
def gpu_startup():
|
|
|
31 |
"""
|
32 |
+
Hàm này chạy ngay khi Space bật trên ZeroGPU.
|
33 |
+
Chỉ ở đây mới 'đụng' tới torch/cuda.
|
34 |
+
"""
|
35 |
+
global DEVICE, USE_HALF
|
36 |
+
import torch
|
37 |
|
38 |
+
has_cuda = torch.cuda.is_available()
|
39 |
+
DEVICE = "cuda" if has_cuda else "cpu"
|
40 |
+
# half precision chỉ an toàn khi có CUDA
|
41 |
+
USE_HALF = bool(has_cuda)
|
42 |
+
|
43 |
+
print(f"[startup] CUDA available: {has_cuda}, device={DEVICE}, half={USE_HALF}")
|
44 |
+
|
45 |
+
# --------------------
|
46 |
+
# Utils
|
47 |
+
# --------------------
|
48 |
+
def rnd_string(x):
|
49 |
+
chars = "abcdefghijklmnopqrstuvwxyz_0123456789"
|
50 |
+
return "".join(random.choice(chars) for _ in range(x))
|
51 |
+
|
52 |
+
def has_transparency(img):
|
53 |
+
if img.info.get("transparency", None) is not None:
|
54 |
+
return True
|
55 |
+
if img.mode == "P":
|
56 |
+
transparent = img.info.get("transparency", -1)
|
57 |
+
for _, index in img.getcolors():
|
58 |
+
if index == transparent:
|
59 |
+
return True
|
60 |
+
elif img.mode == "RGBA":
|
61 |
+
extrema = img.getextrema()
|
62 |
+
if extrema[3][0] < 255:
|
63 |
+
return True
|
64 |
+
return False
|
65 |
+
|
66 |
+
def image_properties(img):
|
67 |
+
global img_mode
|
68 |
+
if img:
|
69 |
+
if has_transparency(img):
|
70 |
+
img_mode = "RGBA"
|
71 |
+
else:
|
72 |
+
img_mode = "RGB"
|
73 |
+
return f"Resolution: Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
|
74 |
+
|
75 |
+
def reset():
|
76 |
+
global last_file
|
77 |
+
if last_file:
|
78 |
+
try:
|
79 |
+
print(f"Deleting {last_file} ...")
|
80 |
+
os.remove(last_file)
|
81 |
+
except Exception as e:
|
82 |
+
print("Delete error:", e)
|
83 |
+
finally:
|
84 |
+
last_file = None
|
85 |
+
return gr.update(value=None), gr.update(value=None)
|
86 |
+
|
87 |
+
# --------------------
|
88 |
+
# Model builder (không gọi CUDA ở ngoài startup; mọi thứ phụ thuộc DEVICE/USE_HALF)
|
89 |
+
# --------------------
|
90 |
+
def get_model_and_paths(model_name, denoise_strength):
|
91 |
+
"""Chuẩn bị kiến trúc model + đường dẫn trọng số + dni_weight (nếu cần)."""
|
92 |
+
if model_name in ('RealESRGAN_x4plus', 'RealESRNet_x4plus'):
|
93 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
94 |
netscale = 4
|
95 |
+
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'] \
|
96 |
+
if model_name == 'RealESRGAN_x4plus' else \
|
97 |
+
['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
|
98 |
+
elif model_name == 'RealESRGAN_x4plus_anime_6B':
|
99 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
100 |
netscale = 4
|
101 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
|
102 |
+
elif model_name == 'RealESRGAN_x2plus':
|
103 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
104 |
netscale = 2
|
105 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
|
106 |
+
elif model_name == 'realesr-general-x4v3':
|
107 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
108 |
netscale = 4
|
109 |
file_url = [
|
110 |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
|
111 |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
|
112 |
]
|
113 |
+
else:
|
114 |
+
raise ValueError(f"Unsupported model: {model_name}")
|
115 |
|
116 |
+
# tải trọng số (nếu chưa có)
|
117 |
model_path = os.path.join('weights', model_name + '.pth')
|
118 |
if not os.path.isfile(model_path):
|
119 |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
120 |
for url in file_url:
|
121 |
+
model_path = load_file_from_url(url=url, model_dir=os.path.join(ROOT_DIR, 'weights'),
|
122 |
+
progress=True, file_name=None)
|
|
|
123 |
|
124 |
+
# dni (chỉ riêng general-x4v3)
|
125 |
dni_weight = None
|
126 |
if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
|
127 |
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
|
128 |
model_path = [model_path, wdn_model_path]
|
129 |
dni_weight = [denoise_strength, 1 - denoise_strength]
|
130 |
|
131 |
+
return model, netscale, model_path, dni_weight
|
132 |
+
|
133 |
+
def get_upsampler(model_name, denoise_strength):
|
134 |
+
"""Khởi tạo/cached RealESRGANer theo device & half hiện hành."""
|
135 |
+
key = (model_name, float(denoise_strength), DEVICE, USE_HALF)
|
136 |
+
if key in UPSAMPLER_CACHE:
|
137 |
+
return UPSAMPLER_CACHE[key]
|
138 |
+
|
139 |
+
model, netscale, model_path, dni_weight = get_model_and_paths(model_name, denoise_strength)
|
140 |
+
|
141 |
+
# Cấu hình theo thiết bị
|
142 |
+
# - half=True khi GPU; False khi CPU
|
143 |
+
# - gpu_id=0 khi GPU; None khi CPU
|
144 |
+
half_flag = bool(USE_HALF)
|
145 |
+
gpu_id = 0 if DEVICE == "cuda" else None
|
146 |
+
|
147 |
upsampler = RealESRGANer(
|
148 |
scale=netscale,
|
149 |
model_path=model_path,
|
|
|
152 |
tile=0,
|
153 |
tile_pad=10,
|
154 |
pre_pad=10,
|
155 |
+
half=half_flag,
|
156 |
+
gpu_id=gpu_id
|
157 |
+
)
|
158 |
+
UPSAMPLER_CACHE[key] = upsampler
|
159 |
+
return upsampler
|
160 |
+
|
161 |
+
def get_face_enhancer(upsampler, outscale):
|
162 |
+
key = (int(outscale), DEVICE, USE_HALF)
|
163 |
+
if key in GFPGAN_FACE_ENHANCER:
|
164 |
+
return GFPGAN_FACE_ENHANCER[key]
|
165 |
+
from gfpgan import GFPGANer
|
166 |
+
face_enhancer = GFPGANer(
|
167 |
+
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
|
168 |
+
upscale=int(outscale),
|
169 |
+
arch='clean',
|
170 |
+
channel_multiplier=2,
|
171 |
+
bg_upsampler=upsampler
|
172 |
)
|
173 |
+
GFPGAN_FACE_ENHANCER[key] = face_enhancer
|
174 |
+
return face_enhancer
|
175 |
+
|
176 |
+
# --------------------
|
177 |
+
# Inference (đánh dấu @spaces.GPU vì có thể chạy trên GPU)
|
178 |
+
# --------------------
|
179 |
+
@spaces.GPU
|
180 |
+
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
181 |
+
"""Real-ESRGAN restore/upscale."""
|
182 |
+
if not img:
|
183 |
+
return
|
184 |
+
|
185 |
+
upsampler = get_upsampler(model_name, denoise_strength)
|
186 |
|
187 |
+
# PIL -> cv2 BGRA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
cv_img = numpy.array(img)
|
189 |
+
img_bgra = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
|
190 |
|
|
|
191 |
try:
|
192 |
if face_enhance:
|
193 |
+
face_enhancer = get_face_enhancer(upsampler, outscale)
|
194 |
+
_, _, output = face_enhancer.enhance(
|
195 |
+
img_bgra, has_aligned=False, only_center_face=False, paste_back=True
|
196 |
+
)
|
197 |
else:
|
198 |
+
output, _ = upsampler.enhance(img_bgra, outscale=int(outscale))
|
199 |
except RuntimeError as error:
|
200 |
+
# Gợi ý tự động giảm tile nếu OOM
|
201 |
print('Error', error)
|
202 |
+
return None
|
203 |
else:
|
204 |
+
extension = 'png' if img_mode == 'RGBA' else 'jpg'
|
|
|
|
|
|
|
|
|
|
|
205 |
out_filename = f"output_{rnd_string(8)}.{extension}"
|
206 |
cv2.imwrite(out_filename, output)
|
207 |
global last_file
|
208 |
last_file = out_filename
|
209 |
return out_filename
|
210 |
|
211 |
+
# --------------------
|
212 |
+
# UI
|
213 |
+
# --------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
def main():
|
|
|
215 |
with gr.Blocks(title="Real-ESRGAN Gradio Demo", theme="ParityError/Interstellar") as demo:
|
216 |
+
gr.Markdown("## Image Upscaler")
|
|
|
|
|
|
|
|
|
217 |
|
218 |
with gr.Accordion("Upscaling option"):
|
219 |
with gr.Row():
|
220 |
+
model_name = gr.Dropdown(
|
221 |
+
label="Upscaler model",
|
222 |
+
choices=[
|
223 |
+
"RealESRGAN_x4plus",
|
224 |
+
"RealESRNet_x4plus",
|
225 |
+
"RealESRGAN_x4plus_anime_6B",
|
226 |
+
"RealESRGAN_x2plus",
|
227 |
+
"realesr-general-x4v3",
|
228 |
+
],
|
229 |
+
value="RealESRGAN_x4plus_anime_6B",
|
230 |
+
show_label=True
|
231 |
)
|
232 |
+
denoise_strength = gr.Slider(label="Denoise Strength", minimum=0, maximum=1, step=0.1, value=0.5)
|
233 |
+
outscale = gr.Slider(label="Resolution upscale", minimum=1, maximum=6, step=1, value=4, show_label=True)
|
234 |
+
face_enhance = gr.Checkbox(label="Face Enhancement (GFPGAN)")
|
235 |
+
|
236 |
with gr.Row():
|
237 |
with gr.Group():
|
238 |
input_image = gr.Image(label="Input Image", type="pil", image_mode="RGBA")
|
|
|
242 |
reset_btn = gr.Button("Remove images")
|
243 |
restore_btn = gr.Button("Upscale")
|
244 |
|
|
|
245 |
input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
|
246 |
restore_btn.click(fn=realesrgan,
|
247 |
inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
|
248 |
outputs=output_image)
|
249 |
reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
252 |
|
253 |
if __name__ == "__main__":
|
254 |
+
# Gọi hàm startup để ZeroGPU cấp GPU ngay khi Space boot
|
255 |
+
gpu_startup()
|
256 |
main()
|