Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from gradio_imageslider import ImageSlider | |
| from loadimg import load_img | |
| import spaces | |
| from transformers import AutoModelForImageSegmentation | |
| import torch | |
| from torchvision import transforms | |
| # torch.set_float32_matmul_precision(['high', 'highest'][0]) | |
| birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True,device="auto",torch_dtype=torch.float16) | |
| transform_image = transforms.Compose([ | |
| transforms.Resize((1024, 1024)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| def fn(image): | |
| im = load_img(image) | |
| im = im.convert('RGB') | |
| image = load_img(im) | |
| input_images = transform_image(image).unsqueeze(0).to('cuda') | |
| # Prediction | |
| with torch.no_grad(): | |
| preds = birefnet(input_images)[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| pred_pil = transforms.ToPILImage()(pred) | |
| out = (pred_pil , im) | |
| return out | |
| slider1 = ImageSlider(label="birefnet", type="pil") | |
| slider2 = ImageSlider(label="RMBG", type="pil") | |
| image = gr.Image(label="Upload an image") | |
| text = gr.Textbox(label="Paste an image URL") | |
| tab1 = gr.Interface(fn,inputs= image, outputs= slider1, api_name="image") | |
| tab2 = gr.Interface(fn,inputs= text, outputs= slider2, api_name="text") | |
| demo = gr.TabbedInterface([tab1,tab2],["image","text"],title="RMBG with image slider") | |
| if __name__ == "__main__": | |
| demo.launch() |