File size: 19,138 Bytes
dfec228 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
from typing import Any, Optional, Union
from pathlib import Path
import os
import io
import lmdb
import pickle
import gzip
import bz2
import lzma
import shutil
from tqdm import tqdm
import pandas as pd
import numpy as np
from numpy import ndarray
import time
import torch
from torch import Tensor
from distutils.dir_util import copy_tree
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
def _default_encode(data: Any, protocol: int) -> bytes:
return pickle.dumps(data, protocol=protocol)
def _ascii_encode(data: str) -> bytes:
return data.encode("ascii")
def _default_decode(data: bytes) -> Any:
return pickle.loads(data)
def _default_decompress(data: bytes) -> bytes:
return data
def _decompress(compression: Optional[str]):
if compression is None:
_decompress = _default_decompress
elif compression == "gzip":
_decompress = gzip.decompress
elif compression == "bz2":
_decompress = bz2.decompress
elif compression == "lzma":
_decompress = lzma.decompress
else:
raise ValueError(f"Unknown compression algorithm: {compression}")
return _decompress
class BaseLMDB(object):
_database = None
_protocol = None
_length = None
def __init__(
self,
path: Union[str, Path],
readahead: bool = False,
pre_open: bool = False,
compression: Optional[str] = None
):
"""
Base class for LMDB-backed databases.
:param path: Path to the database.
:param readahead: Enables the filesystem readahead mechanism.
:param pre_open: If set to True, the first iterations will be faster, but it will raise error when doing multi-gpu training. If set to False, the database will open when you will retrieve the first item.
"""
if not isinstance(path, str):
path = str(path)
self.path = path
self.readahead = readahead
self.pre_open = pre_open
self._decompress = _decompress(compression)
self._has_fetched_an_item = False
@property
def database(self):
if self._database is None:
self._database = lmdb.open(
path=self.path,
readonly=True,
readahead=self.readahead,
max_spare_txns=256,
lock=False,
)
return self._database
@database.deleter
def database(self):
if self._database is not None:
self._database.close()
self._database = None
@property
def protocol(self):
"""
Read the pickle protocol contained in the database.
:return: The set of available keys.
"""
if self._protocol is None:
self._protocol = self._get(
item="protocol",
encode_key=_ascii_encode,
decompress_value=_default_decompress,
decode_value=_default_decode,
)
return self._protocol
@property
def keys(self):
"""
Read the keys contained in the database.
:return: The set of available keys.
"""
protocol = self.protocol
keys = self._get(
item="keys",
encode_key=lambda key: _default_encode(key, protocol=protocol),
decompress_value=_default_decompress,
decode_value=_default_decode,
)
return keys
def __len__(self):
"""
Returns the number of keys available in the database.
:return: The number of keys.
"""
if self._length is None:
self._length = len(self.keys)
return self._length
def __getitem__(self, item):
"""
Retrieves an item or a list of items from the database.
:param item: A key or a list of keys.
:return: A value or a list of values.
"""
self._has_fetched_an_item = True
if not isinstance(item, list):
item = self._get(
item=item,
encode_key=self._encode_key,
decompress_value=self._decompress_value,
decode_value=self._decode_value,
)
else:
item = self._gets(
items=item,
encode_keys=self._encode_keys,
decompress_values=self._decompress_values,
decode_values=self._decode_values,
)
return item
def _get(self, item, encode_key, decompress_value, decode_value):
"""
Instantiates a transaction and its associated cursor to fetch an item.
:param item: A key.
:param encode_key:
:param decode_value:
:return:
"""
with self.database.begin() as txn:
with txn.cursor() as cursor:
item = self._fetch(
cursor=cursor,
key=item,
encode_key=encode_key,
decompress_value=decompress_value,
decode_value=decode_value,
)
self._keep_database()
return item
def _gets(self, items, encode_keys, decompress_values, decode_values):
"""
Instantiates a transaction and its associated cursor to fetch a list of items.
:param items: A list of keys.
:param encode_keys:
:param decode_values:
:return:
"""
with self.database.begin() as txn:
with txn.cursor() as cursor:
items = self._fetchs(
cursor=cursor,
keys=items,
encode_keys=encode_keys,
decompress_values=decompress_values,
decode_values=decode_values,
)
self._keep_database()
return items
def _fetch(self, cursor, key, encode_key, decompress_value, decode_value):
"""
Retrieve a value given a key.
:param cursor:
:param key: A key.
:param encode_key:
:param decode_value:
:return: A value.
"""
key = encode_key(key)
value = cursor.get(key)
value = decompress_value(value)
value = decode_value(value)
return value
def _fetchs(self, cursor, keys, encode_keys, decompress_values, decode_values):
"""
Retrieve a list of values given a list of keys.
:param cursor:
:param keys: A list of keys.
:param encode_keys:
:param decode_values:
:return: A list of values.
"""
keys = encode_keys(keys)
_, values = list(zip(*cursor.getmulti(keys)))
values = decompress_values(values)
values = decode_values(values)
return values
def _encode_key(self, key: Any) -> bytes:
"""
Converts a key into a byte key.
:param key: A key.
:return: A byte key.
"""
return pickle.dumps(key, protocol=self.protocol)
def _encode_keys(self, keys: list) -> list:
"""
Converts keys into byte keys.
:param keys: A list of keys.
:return: A list of byte keys.
"""
return [self._encode_key(key=key) for key in keys]
def _decompress_value(self, value: bytes) -> bytes:
return self._decompress(value)
def _decompress_values(self, values: list) -> list:
return [self._decompress_value(value=value) for value in values]
def _decode_value(self, value: bytes) -> Any:
"""
Converts a byte value back into a value.
:param value: A byte value.
:return: A value
"""
return pickle.loads(value)
def _decode_values(self, values: list) -> list:
"""
Converts bytes values back into values.
:param values: A list of byte values.
:return: A list of values.
"""
return [self._decode_value(value=value) for value in values]
def _keep_database(self):
"""
Checks if the database must be deleted.
:return:
"""
if not self.pre_open and not self._has_fetched_an_item:
del self.database
def __iter__(self):
"""
Provides an iterator over the keys when iterating over the database.
:return: An iterator on the keys.
"""
return iter(self.keys)
def __del__(self):
"""
Closes the database properly.
"""
del self.database
@staticmethod
def write(data_lst, indir, outdir):
raise NotImplementedError
class PILlmdb(BaseLMDB):
def __init__(
self,
lmdb_dir: Union[str, Path],
image_list: Union[str, Path, pd.DataFrame]=None,
index_key='id',
**kwargs
):
super().__init__(path=lmdb_dir, **kwargs)
if image_list is None:
self.ids = list(range(len(self.keys)))
self.labels = list(range(len(self.ids)))
else:
df = pd.read_csv(str(image_list))
assert index_key in df, f'[PILlmdb] Error! {image_list} must have id keys.'
self.ids = df[index_key].tolist()
assert max(self.ids) < len(self.keys)
if 'label' in df:
self.labels = df['label'].tolist()
else: # all numeric keys other than 'id' are labels
keys = [key for key in df if (key!=index_key and type(df[key][0]) in [int, np.int64])]
# df = df.drop('id', axis=1)
self.labels = df[keys].to_numpy()
self._length = len(self.ids)
def __len__(self):
return self._length
def __iter__(self):
return iter([self.keys[i] for i in self.ids])
def __getitem__(self, index):
key = self.keys[self.ids[index]]
return super().__getitem__(key)
def set_ids(self, ids):
self.ids = [self.ids[i] for i in ids]
self.labels = [self.labels[i] for i in ids]
self._length = len(self.ids)
def _decode_value(self, value: bytes):
"""
Converts a byte image back into a PIL Image.
:param value: A byte image.
:return: A PIL Image image.
"""
return Image.open(io.BytesIO(value))
@staticmethod
def write(indir, outdir, data_lst=None, transform=None):
"""
create lmdb given data directory and list of image paths; or an iterator
:param data_lst None or csv file containing 'path' key to store relative paths to the images
:param indir root directory of the images
:param outdir output lmdb, data.mdb and lock.mdb will be written here
"""
outdir = Path(outdir)
outdir.mkdir(parents=True, exist_ok=True)
tmp_dir = Path("/tmp") / f"TEMP_{time.time()}"
tmp_dir.mkdir(parents=True, exist_ok=True)
dtype = {'str': False, 'pil': False}
if isinstance(indir, str) or isinstance(indir, Path):
indir = Path(indir)
if data_lst is None: # grab all images in this dir
lst = list(indir.glob('**/*.jpg')) + list(indir.glob('**/*.png'))
else:
lst = pd.read_csv(data_lst)['path'].tolist()
lst = [indir/p for p in lst]
assert len(lst) > 0, f'Couldnt find any image in {indir} (Support only .jpg and .png) or list (must have path field).'
n = len(lst)
dtype['str'] = True
else: # iterator
n = len(indir)
lst = iter(indir)
dtype['pil'] = True
with lmdb.open(path=str(tmp_dir), map_size=2 ** 40) as env:
# Add the protocol to the database.
with env.begin(write=True) as txn:
key = "protocol".encode("ascii")
value = pickle.dumps(pickle.DEFAULT_PROTOCOL)
txn.put(key=key, value=value, dupdata=False)
# Add the keys to the database.
with env.begin(write=True) as txn:
key = pickle.dumps("keys")
value = pickle.dumps(list(range(n)))
txn.put(key=key, value=value, dupdata=False)
# Add the images to the database.
for key, value in tqdm(enumerate(lst), total=n, miniters=n//100, mininterval=300):
with env.begin(write=True) as txn:
key = pickle.dumps(key)
if dtype['str']:
with value.open("rb") as file:
byteimg = file.read()
else: # PIL
data = io.BytesIO()
value.save(data, 'png')
byteimg = data.getvalue()
if transform is not None:
im = Image.open(io.BytesIO(byteimg))
im = transform(im)
data = io.BytesIO()
im.save(data, 'png')
byteimg = data.getvalue()
txn.put(key=key, value=byteimg, dupdata=False)
# Move the database to its destination.
copy_tree(str(tmp_dir), str(outdir))
shutil.rmtree(str(tmp_dir))
class MaskDatabase(PILlmdb):
def _decode_value(self, value: bytes):
"""
Converts a byte image back into a PIL Image.
:param value: A byte image.
:return: A PIL Image image.
"""
return Image.open(io.BytesIO(value)).convert("1")
class LabelDatabase(BaseLMDB):
pass
class ArrayDatabase(BaseLMDB):
_dtype = None
_shape = None
def __init__(
self,
lmdb_dir: Union[str, Path],
image_list: Union[str, Path, pd.DataFrame]=None,
**kwargs
):
super().__init__(path=lmdb_dir, **kwargs)
if image_list is None:
self.ids = list(range(len(self.keys)))
self.labels = list(range(len(self.ids)))
else:
df = pd.read_csv(str(image_list))
assert 'id' in df, f'[ArrayDatabase] Error! {image_list} must have id keys.'
self.ids = df['id'].tolist()
assert max(self.ids) < len(self.keys)
if 'label' in df:
self.labels = df['label'].tolist()
else: # all numeric keys other than 'id' are labels
keys = [key for key in df if (key!='id' and type(df[key][0]) in [int, np.int64])]
# df = df.drop('id', axis=1)
self.labels = df[keys].to_numpy()
self._length = len(self.ids)
def set_ids(self, ids):
self.ids = [self.ids[i] for i in ids]
self.labels = [self.labels[i] for i in ids]
self._length = len(self.ids)
def __len__(self):
return self._length
def __iter__(self):
return iter([self.keys[i] for i in self.ids])
def __getitem__(self, index):
key = self.keys[self.ids[index]]
return super().__getitem__(key)
@property
def dtype(self):
if self._dtype is None:
protocol = self.protocol
self._dtype = self._get(
item="dtype",
encode_key=lambda key: _default_encode(key, protocol=protocol),
decompress_value=_default_decompress,
decode_value=_default_decode,
)
return self._dtype
@property
def shape(self):
if self._shape is None:
protocol = self.protocol
self._shape = self._get(
item="shape",
encode_key=lambda key: _default_encode(key, protocol=protocol),
decompress_value=_default_decompress,
decode_value=_default_decode,
)
return self._shape
def _decode_value(self, value: bytes) -> ndarray:
value = super()._decode_value(value)
return np.frombuffer(value, dtype=self.dtype).reshape(self.shape)
def _decode_values(self, values: list) -> ndarray:
shape = (len(values),) + self.shape
return np.frombuffer(b"".join(values), dtype=self.dtype).reshape(shape)
@staticmethod
def write(diter, outdir):
"""
diter is an iterator that has __len__ method
class Myiter():
def __init__(self, data):
self.data = data
def __iter__(self):
self.counter = 0
return self
def __len__(self):
return len(self.data)
def __next__(self):
if self.counter < len(self):
out = self.data[self.counter]
self.counter+=1
return out
else:
raise StopIteration
a = iter(Myiter([1,2,3]))
for i in a:
print(i)
"""
outdir = Path(outdir)
outdir.mkdir(parents=True, exist_ok=True)
tmp_dir = Path("/tmp") / f"TEMP_{time.time()}"
tmp_dir.mkdir(parents=True, exist_ok=True)
# Create the database.
n = len(diter)
with lmdb.open(path=str(tmp_dir), map_size=2 ** 40) as env:
# Add the protocol to the database.
with env.begin(write=True) as txn:
key = "protocol".encode("ascii")
value = pickle.dumps(pickle.DEFAULT_PROTOCOL)
txn.put(key=key, value=value, dupdata=False)
# Add the keys to the database.
with env.begin(write=True) as txn:
key = pickle.dumps("keys")
value = pickle.dumps(list(range(n)))
txn.put(key=key, value=value, dupdata=False)
# Extract the shape and dtype of the values.
value = next(iter(diter))
shape = value.shape
dtype = value.dtype
# Add the shape to the database.
with env.begin(write=True) as txn:
key = pickle.dumps("shape")
value = pickle.dumps(shape)
txn.put(key=key, value=value, dupdata=False)
# Add the dtype to the database.
with env.begin(write=True) as txn:
key = pickle.dumps("dtype")
value = pickle.dumps(dtype)
txn.put(key=key, value=value, dupdata=False)
# Add the values to the database.
with env.begin(write=True) as txn:
for key, value in tqdm(enumerate(iter(diter)), total=n, miniters=n//100, mininterval=300):
key = pickle.dumps(key)
value = pickle.dumps(value)
txn.put(key=key, value=value, dupdata=False)
# Move the database to its destination.
copy_tree(str(tmp_dir), str(outdir))
shutil.rmtree(str(tmp_dir))
class TensorDatabase(ArrayDatabase):
def _decode_value(self, value: bytes) -> Tensor:
return torch.from_numpy(super(TensorDatabase, self)._decode_value(value))
def _decode_values(self, values: list) -> Tensor:
return torch.from_numpy(super(TensorDatabase, self)._decode_values(values))
|