Update app.py
Browse files
app.py
CHANGED
|
@@ -16,34 +16,12 @@ DetectorFactory.seed = 0
|
|
| 16 |
CHECKPOINT_FILE = "checkpoint.txt"
|
| 17 |
TOKENIZER_DIR = "tokenizer_model"
|
| 18 |
TOKENIZER_FILE = os.path.join(TOKENIZER_DIR, "tokenizer.json")
|
| 19 |
-
CHUNK_SIZE =
|
| 20 |
-
MAX_SAMPLES =
|
| 21 |
|
| 22 |
# Παγκόσμια μεταβλητή ελέγχου συλλογής
|
| 23 |
STOP_COLLECTION = False
|
| 24 |
|
| 25 |
-
def fetch_splits(dataset_name):
|
| 26 |
-
"""Ανάκτηση των splits του dataset από το Hugging Face."""
|
| 27 |
-
try:
|
| 28 |
-
response = requests.get(f"https://datasets-server.huggingface.co/splits?dataset={dataset_name}", timeout=10)
|
| 29 |
-
response.raise_for_status()
|
| 30 |
-
data = response.json()
|
| 31 |
-
|
| 32 |
-
splits_info = {}
|
| 33 |
-
for split in data['splits']:
|
| 34 |
-
config = split['config']
|
| 35 |
-
split_name = split['split']
|
| 36 |
-
if config not in splits_info:
|
| 37 |
-
splits_info[config] = []
|
| 38 |
-
splits_info[config].append(split_name)
|
| 39 |
-
|
| 40 |
-
return {
|
| 41 |
-
"splits": splits_info,
|
| 42 |
-
"viewer_template": f"https://huggingface.co/datasets/{dataset_name}/embed/viewer/{{config}}/{{split}}"
|
| 43 |
-
}
|
| 44 |
-
except Exception as e:
|
| 45 |
-
raise gr.Error(f"Σφάλμα κατά την ανάκτηση των splits: {str(e)}")
|
| 46 |
-
|
| 47 |
def create_iterator(dataset_name, configs, split):
|
| 48 |
"""Φορτώνει το dataset και αποδίδει τα κείμενα ως iterator."""
|
| 49 |
configs_list = [c.strip() for c in configs.split(",") if c.strip()]
|
|
@@ -71,9 +49,7 @@ def load_checkpoint():
|
|
| 71 |
return []
|
| 72 |
|
| 73 |
def analyze_checkpoint(num_samples=1000):
|
| 74 |
-
"""
|
| 75 |
-
Διαβάζει τα πρώτα num_samples δείγματα από το checkpoint και επιστρέφει το ποσοστό γλωσσών.
|
| 76 |
-
"""
|
| 77 |
if not os.path.exists(CHECKPOINT_FILE):
|
| 78 |
return "Το αρχείο checkpoint δεν υπάρχει."
|
| 79 |
|
|
@@ -89,25 +65,22 @@ def analyze_checkpoint(num_samples=1000):
|
|
| 89 |
lang = detect(line)
|
| 90 |
language_counts[lang] = language_counts.get(lang, 0) + 1
|
| 91 |
total += 1
|
| 92 |
-
except Exception
|
| 93 |
continue
|
| 94 |
|
| 95 |
if total == 0:
|
| 96 |
return "Δεν βρέθηκαν έγκυρα δείγματα για ανάλυση."
|
| 97 |
|
| 98 |
-
report = "Αποτελέσματα Ανάλυσης:\n"
|
| 99 |
for lang, count in language_counts.items():
|
| 100 |
-
report += f"Γλώσσα {lang}: {count/total*100:.2f}%\n"
|
| 101 |
|
| 102 |
return report
|
| 103 |
|
| 104 |
def collect_samples(dataset_name, configs, split):
|
| 105 |
-
"""
|
| 106 |
-
Ξεκινά τη συλλογή δειγμάτων από το dataset μέχρι να φτάσει το MAX_SAMPLES
|
| 107 |
-
ή μέχρι να ζητηθεί διακοπή (STOP_COLLECTION).
|
| 108 |
-
"""
|
| 109 |
global STOP_COLLECTION
|
| 110 |
-
STOP_COLLECTION = False #
|
| 111 |
total_processed = len(load_checkpoint())
|
| 112 |
progress_messages = [f"📌 Υπάρχουν ήδη {total_processed} δείγματα στο checkpoint."]
|
| 113 |
|
|
@@ -116,7 +89,7 @@ def collect_samples(dataset_name, configs, split):
|
|
| 116 |
|
| 117 |
for text in dataset_iterator:
|
| 118 |
if STOP_COLLECTION:
|
| 119 |
-
progress_messages.append("⏹️ Η συλλογή
|
| 120 |
break
|
| 121 |
|
| 122 |
new_texts.append(text)
|
|
@@ -138,17 +111,12 @@ def collect_samples(dataset_name, configs, split):
|
|
| 138 |
return "\n".join(progress_messages)
|
| 139 |
|
| 140 |
def train_tokenizer_fn(dataset_name, configs, split, vocab_size, min_freq, test_text):
|
| 141 |
-
"""
|
| 142 |
-
|
| 143 |
-
"""
|
| 144 |
-
print("🚀 Ξεκινά η εκπαίδευση του tokenizer με τα δεδομένα του checkpoint...")
|
| 145 |
all_texts = load_checkpoint()
|
| 146 |
tokenizer = train_tokenizer(all_texts, vocab_size, min_freq, TOKENIZER_DIR)
|
| 147 |
|
| 148 |
-
# Φόρτωση εκπαιδευμένου tokenizer
|
| 149 |
trained_tokenizer = Tokenizer.from_file(TOKENIZER_FILE)
|
| 150 |
-
|
| 151 |
-
# Δοκιμή
|
| 152 |
encoded = trained_tokenizer.encode(test_text)
|
| 153 |
decoded = trained_tokenizer.decode(encoded.ids)
|
| 154 |
|
|
@@ -167,33 +135,25 @@ def train_tokenizer_fn(dataset_name, configs, split, vocab_size, min_freq, test_
|
|
| 167 |
img_buffer.getvalue())
|
| 168 |
|
| 169 |
# Callbacks κουμπιών
|
| 170 |
-
|
| 171 |
def start_collection(dataset_name, configs, split):
|
| 172 |
-
|
| 173 |
-
msg = collect_samples(dataset_name, configs, split)
|
| 174 |
-
return msg
|
| 175 |
|
| 176 |
def stop_collection():
|
| 177 |
-
"""Θέτει το flag για διακοπή της συλλογής δειγμάτων."""
|
| 178 |
global STOP_COLLECTION
|
| 179 |
STOP_COLLECTION = True
|
| 180 |
-
return "Η συλλογή σταμάτησε από το χρήστη."
|
| 181 |
|
| 182 |
def restart_collection():
|
| 183 |
-
"""
|
| 184 |
-
Επαναφέρει τη συλλογή διαγράφοντας το checkpoint και
|
| 185 |
-
επαναφέροντας το flag ώστε να ξεκινήσει νέα συλλογή.
|
| 186 |
-
"""
|
| 187 |
global STOP_COLLECTION
|
| 188 |
STOP_COLLECTION = False
|
| 189 |
if os.path.exists(CHECKPOINT_FILE):
|
| 190 |
os.remove(CHECKPOINT_FILE)
|
| 191 |
-
return "Το checkpoint
|
| 192 |
|
| 193 |
# Gradio Interface
|
| 194 |
with gr.Blocks() as demo:
|
| 195 |
-
gr.Markdown("## Wikipedia Tokenizer Trainer
|
| 196 |
-
|
| 197 |
with gr.Row():
|
| 198 |
with gr.Column():
|
| 199 |
dataset_name = gr.Textbox(value="wikimedia/wikipedia", label="Dataset Name")
|
|
@@ -202,38 +162,26 @@ with gr.Blocks() as demo:
|
|
| 202 |
vocab_size = gr.Slider(20000, 100000, value=50000, label="Vocabulary Size")
|
| 203 |
min_freq = gr.Slider(1, 100, value=3, label="Minimum Frequency")
|
| 204 |
test_text = gr.Textbox(value="Η Ακρόπολη είναι σύμβολο της αρχαίας Ελλάδας.", label="Test Text")
|
|
|
|
| 205 |
start_btn = gr.Button("Start Collection")
|
| 206 |
stop_btn = gr.Button("Stop Collection")
|
| 207 |
analyze_btn = gr.Button("Analyze Samples")
|
| 208 |
restart_btn = gr.Button("Restart Collection")
|
| 209 |
train_btn = gr.Button("Train Tokenizer")
|
|
|
|
| 210 |
with gr.Column():
|
| 211 |
progress = gr.Textbox(label="Progress", interactive=False, lines=10)
|
| 212 |
results_text = gr.Textbox(label="Test Decoded Text", interactive=False)
|
| 213 |
results_plot = gr.Image(label="Token Length Distribution")
|
| 214 |
-
|
| 215 |
initial_file_value = TOKENIZER_FILE if os.path.exists(TOKENIZER_FILE) else None
|
| 216 |
download_button = gr.File(label="Download Tokenizer", value=initial_file_value)
|
| 217 |
|
| 218 |
# Συνδέουμε τα κουμπιά με τις συναρτήσεις
|
| 219 |
-
start_btn.click(fn=start_collection,
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
inputs=[],
|
| 225 |
-
outputs=progress)
|
| 226 |
-
|
| 227 |
-
analyze_btn.click(fn=lambda: analyze_checkpoint(1000),
|
| 228 |
-
inputs=[],
|
| 229 |
-
outputs=progress)
|
| 230 |
-
|
| 231 |
-
restart_btn.click(fn=restart_collection,
|
| 232 |
-
inputs=[],
|
| 233 |
-
outputs=progress)
|
| 234 |
-
|
| 235 |
-
train_btn.click(fn=train_tokenizer_fn,
|
| 236 |
-
inputs=[dataset_name, configs, split, vocab_size, min_freq, test_text],
|
| 237 |
-
outputs=[progress, results_text, results_plot])
|
| 238 |
|
| 239 |
demo.launch()
|
|
|
|
| 16 |
CHECKPOINT_FILE = "checkpoint.txt"
|
| 17 |
TOKENIZER_DIR = "tokenizer_model"
|
| 18 |
TOKENIZER_FILE = os.path.join(TOKENIZER_DIR, "tokenizer.json")
|
| 19 |
+
CHUNK_SIZE = 50000 # Μέγεθος batch για checkpoint
|
| 20 |
+
MAX_SAMPLES = 50000000 # Όριο δειγμάτων (προσαρμόστε όπως χρειάζεται)
|
| 21 |
|
| 22 |
# Παγκόσμια μεταβλητή ελέγχου συλλογής
|
| 23 |
STOP_COLLECTION = False
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def create_iterator(dataset_name, configs, split):
|
| 26 |
"""Φορτώνει το dataset και αποδίδει τα κείμενα ως iterator."""
|
| 27 |
configs_list = [c.strip() for c in configs.split(",") if c.strip()]
|
|
|
|
| 49 |
return []
|
| 50 |
|
| 51 |
def analyze_checkpoint(num_samples=1000):
|
| 52 |
+
"""Αναλύει τη γλωσσική κατανομή των δειγμάτων στο checkpoint."""
|
|
|
|
|
|
|
| 53 |
if not os.path.exists(CHECKPOINT_FILE):
|
| 54 |
return "Το αρχείο checkpoint δεν υπάρχει."
|
| 55 |
|
|
|
|
| 65 |
lang = detect(line)
|
| 66 |
language_counts[lang] = language_counts.get(lang, 0) + 1
|
| 67 |
total += 1
|
| 68 |
+
except Exception:
|
| 69 |
continue
|
| 70 |
|
| 71 |
if total == 0:
|
| 72 |
return "Δεν βρέθηκαν έγκυρα δείγματα για ανάλυση."
|
| 73 |
|
| 74 |
+
report = "📊 Αποτελέσματα Ανάλυσης:\n"
|
| 75 |
for lang, count in language_counts.items():
|
| 76 |
+
report += f"✅ Γλώσσα {lang}: {count/total*100:.2f}%\n"
|
| 77 |
|
| 78 |
return report
|
| 79 |
|
| 80 |
def collect_samples(dataset_name, configs, split):
|
| 81 |
+
"""Ξεκινά τη συλλογή δειγμάτων, εκτός αν ζητηθεί διακοπή."""
|
|
|
|
|
|
|
|
|
|
| 82 |
global STOP_COLLECTION
|
| 83 |
+
STOP_COLLECTION = False # Επανεκκίνηση της συλλογής
|
| 84 |
total_processed = len(load_checkpoint())
|
| 85 |
progress_messages = [f"📌 Υπάρχουν ήδη {total_processed} δείγματα στο checkpoint."]
|
| 86 |
|
|
|
|
| 89 |
|
| 90 |
for text in dataset_iterator:
|
| 91 |
if STOP_COLLECTION:
|
| 92 |
+
progress_messages.append("⏹️ Η συλλογή σταμάτησε από το χρήστη.")
|
| 93 |
break
|
| 94 |
|
| 95 |
new_texts.append(text)
|
|
|
|
| 111 |
return "\n".join(progress_messages)
|
| 112 |
|
| 113 |
def train_tokenizer_fn(dataset_name, configs, split, vocab_size, min_freq, test_text):
|
| 114 |
+
"""Εκπαιδεύει τον tokenizer με τα αποθηκευμένα δείγματα."""
|
| 115 |
+
print("🚀 Ξεκινά η εκπαίδευση του tokenizer...")
|
|
|
|
|
|
|
| 116 |
all_texts = load_checkpoint()
|
| 117 |
tokenizer = train_tokenizer(all_texts, vocab_size, min_freq, TOKENIZER_DIR)
|
| 118 |
|
|
|
|
| 119 |
trained_tokenizer = Tokenizer.from_file(TOKENIZER_FILE)
|
|
|
|
|
|
|
| 120 |
encoded = trained_tokenizer.encode(test_text)
|
| 121 |
decoded = trained_tokenizer.decode(encoded.ids)
|
| 122 |
|
|
|
|
| 135 |
img_buffer.getvalue())
|
| 136 |
|
| 137 |
# Callbacks κουμπιών
|
|
|
|
| 138 |
def start_collection(dataset_name, configs, split):
|
| 139 |
+
return collect_samples(dataset_name, configs, split)
|
|
|
|
|
|
|
| 140 |
|
| 141 |
def stop_collection():
|
|
|
|
| 142 |
global STOP_COLLECTION
|
| 143 |
STOP_COLLECTION = True
|
| 144 |
+
return "⏹️ Η συλλογή σταμάτησε από το χρήστη."
|
| 145 |
|
| 146 |
def restart_collection():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
global STOP_COLLECTION
|
| 148 |
STOP_COLLECTION = False
|
| 149 |
if os.path.exists(CHECKPOINT_FILE):
|
| 150 |
os.remove(CHECKPOINT_FILE)
|
| 151 |
+
return "🔄 Το checkpoint διαγράφηκε. Μπορείς να ξεκινήσεις νέα συλλογή."
|
| 152 |
|
| 153 |
# Gradio Interface
|
| 154 |
with gr.Blocks() as demo:
|
| 155 |
+
gr.Markdown("## Wikipedia Tokenizer Trainer")
|
| 156 |
+
|
| 157 |
with gr.Row():
|
| 158 |
with gr.Column():
|
| 159 |
dataset_name = gr.Textbox(value="wikimedia/wikipedia", label="Dataset Name")
|
|
|
|
| 162 |
vocab_size = gr.Slider(20000, 100000, value=50000, label="Vocabulary Size")
|
| 163 |
min_freq = gr.Slider(1, 100, value=3, label="Minimum Frequency")
|
| 164 |
test_text = gr.Textbox(value="Η Ακρόπολη είναι σύμβολο της αρχαίας Ελλάδας.", label="Test Text")
|
| 165 |
+
|
| 166 |
start_btn = gr.Button("Start Collection")
|
| 167 |
stop_btn = gr.Button("Stop Collection")
|
| 168 |
analyze_btn = gr.Button("Analyze Samples")
|
| 169 |
restart_btn = gr.Button("Restart Collection")
|
| 170 |
train_btn = gr.Button("Train Tokenizer")
|
| 171 |
+
|
| 172 |
with gr.Column():
|
| 173 |
progress = gr.Textbox(label="Progress", interactive=False, lines=10)
|
| 174 |
results_text = gr.Textbox(label="Test Decoded Text", interactive=False)
|
| 175 |
results_plot = gr.Image(label="Token Length Distribution")
|
| 176 |
+
|
| 177 |
initial_file_value = TOKENIZER_FILE if os.path.exists(TOKENIZER_FILE) else None
|
| 178 |
download_button = gr.File(label="Download Tokenizer", value=initial_file_value)
|
| 179 |
|
| 180 |
# Συνδέουμε τα κουμπιά με τις συναρτήσεις
|
| 181 |
+
start_btn.click(fn=start_collection, inputs=[dataset_name, configs, split], outputs=progress)
|
| 182 |
+
stop_btn.click(fn=stop_collection, inputs=[], outputs=progress)
|
| 183 |
+
analyze_btn.click(fn=lambda: analyze_checkpoint(1000), inputs=[], outputs=progress)
|
| 184 |
+
restart_btn.click(fn=restart_collection, inputs=[], outputs=progress)
|
| 185 |
+
train_btn.click(fn=train_tokenizer_fn, inputs=[dataset_name, configs, split, vocab_size, min_freq, test_text], outputs=[progress, results_text, results_plot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
demo.launch()
|