File size: 1,304 Bytes
2c82342
34a3bb8
2c82342
 
 
 
34a3bb8
d691009
 
2c82342
8c07c53
2c82342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
import transformers
#def predict(image):
#  predictions = pipeline(image)
 #  return {p["label"]: p["score"] for p in predictions}

from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
 
def predict(speech):
 # load model and tokenizer
   processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
   model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
 
   #pipeline = pipeline(task="speech-classification", model="facebook/wav2vec2-base-960h")
     
 # load dummy dataset and read soundfiles
   ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
 
 # tokenize
   input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values  # Batch size 1
 
 # retrieve logits
   logits = model(input_values).logits
 
 # take argmax and decode
   predicted_ids = torch.argmax(logits, dim=-1)
   transcription = processor.batch_decode(predicted_ids)
   return transcription
   
demo = gr.Interface(fn=speech, inputs="text", outputs="text")

demo.launch()


#gr.Interface(
#    predict,
#    inputs=gr.inputs.speech(label="Upload", type="filepath"),
#    outputs=gr.outputs.Label(num_top_classes=2),
#    title="Audio",
#).launch()