Spaces:
Runtime error
Runtime error
import gradio as gr | |
import transformers | |
#def predict(image): | |
# predictions = pipeline(image) | |
# return {p["label"]: p["score"] for p in predictions} | |
from datasets import load_dataset | |
import torch | |
from transformers import pipeline | |
def predict(speech): | |
# load model and tokenizer | |
torch.manual_seed(42) | |
ds = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") | |
audio_file = ds[0]["audio"]["path"] | |
audio_classifier = pipeline( | |
task="audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition") | |
preds = audio_classifier(audio_file) | |
return [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] | |
demo = gr.Interface(fn=predict, inputs='texts' outputs="texts") | |
demo.launch() | |
#gr.Interface( | |
# predict, | |
# inputs=gr.inputs.speech(label="Upload", type="filepath"), | |
# outputs=gr.outputs.Label(num_top_classes=2), | |
# title="Audio", | |
#).launch() |