Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import transformers
|
|
6 |
|
7 |
from datasets import load_dataset
|
8 |
import torch
|
9 |
-
|
10 |
|
11 |
def predict(speech):
|
12 |
# load model and tokenizer
|
@@ -14,9 +14,9 @@ def predict(speech):
|
|
14 |
ds = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
15 |
audio_file = ds[0]["audio"]["path"]
|
16 |
audio_classifier = pipeline(
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
return preds
|
21 |
|
22 |
demo = gr.Interface(fn=predict, inputs='texts' outputs="texts")
|
|
|
6 |
|
7 |
from datasets import load_dataset
|
8 |
import torch
|
9 |
+
from transformers import pipeline
|
10 |
|
11 |
def predict(speech):
|
12 |
# load model and tokenizer
|
|
|
14 |
ds = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
15 |
audio_file = ds[0]["audio"]["path"]
|
16 |
audio_classifier = pipeline(
|
17 |
+
task="audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
|
18 |
+
preds = audio_classifier(audio_file)
|
19 |
+
preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
|
20 |
return preds
|
21 |
|
22 |
demo = gr.Interface(fn=predict, inputs='texts' outputs="texts")
|