Spaces:
Running
Running
uBaby4life
commited on
Commit
·
3785cde
1
Parent(s):
22f37d2
Add Flask application with Docker setup for transliterator
Browse files- Dockerfile +42 -0
- README.md +33 -6
- app.py +627 -0
- model_files/tokenizers/encoders_tokenizer/special_tokens_map.json +37 -0
- model_files/tokenizers/encoders_tokenizer/tokenizer.json +0 -0
- model_files/tokenizers/encoders_tokenizer/tokenizer_config.json +63 -0
- model_files/tokenizers/encoders_tokenizer/vocab.txt +0 -0
- model_files/tokenizers/t5_tokenizer/added_tokens.json +130 -0
- model_files/tokenizers/t5_tokenizer/special_tokens_map.json +135 -0
- model_files/tokenizers/t5_tokenizer/spiece.model +3 -0
- model_files/tokenizers/t5_tokenizer/tokenizer_config.json +1169 -0
- requirements.txt +7 -0
- static/style.css +274 -0
- templates/index.html +144 -0
Dockerfile
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Start from a Python base image
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Set environment variables
|
5 |
+
ENV PYTHONUNBUFFERED=1 \
|
6 |
+
# Ensures that Python output is sent straight to terminal without being first buffered
|
7 |
+
# and that can be helpful for logging.
|
8 |
+
PIP_NO_CACHE_DIR=off \
|
9 |
+
# Disables pip caching, which can reduce image size.
|
10 |
+
PIP_DISABLE_PIP_VERSION_CHECK=on \
|
11 |
+
# Disables the check for a new version of pip, speeding up builds.
|
12 |
+
PIP_DEFAULT_TIMEOUT=100 \
|
13 |
+
# Increases the default timeout for pip.
|
14 |
+
HF_HUB_DISABLE_SYMLINKS_WARNING=1
|
15 |
+
# To suppress the symlink warning from huggingface_hub
|
16 |
+
|
17 |
+
# Create a non-root user and switch to it
|
18 |
+
RUN useradd -m -u 1000 user
|
19 |
+
USER user
|
20 |
+
ENV PATH="/home/user/.local/bin:$PATH" # Add user's local bin to PATH
|
21 |
+
|
22 |
+
# Set the working directory in the container
|
23 |
+
WORKDIR /app
|
24 |
+
|
25 |
+
# Copy requirements.txt first to leverage Docker cache
|
26 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
27 |
+
|
28 |
+
# Install dependencies
|
29 |
+
# Using --no-cache-dir to reduce image size further
|
30 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
31 |
+
|
32 |
+
# Copy the rest of the application code into the container
|
33 |
+
# This includes app.py, model_files/, static/, templates/, LICENSE, README.md
|
34 |
+
COPY --chown=user . .
|
35 |
+
|
36 |
+
# Expose the port the app will run on. HF Spaces expects 7860 for Docker.
|
37 |
+
EXPOSE 7860
|
38 |
+
|
39 |
+
# Command to run the application using Gunicorn
|
40 |
+
# It will listen on all interfaces (0.0.0.0) on port 7860.
|
41 |
+
# app:app means "in the file app.py, use the Flask instance named app".
|
42 |
+
CMD ["gunicorn", "--bind", "0.0.0.0:7860", "--workers", "1", "--threads", "2", "--timeout", "0", "app:app"]
|
README.md
CHANGED
@@ -1,12 +1,39 @@
|
|
1 |
---
|
2 |
-
title: BanglaFeel
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: apache-2.0
|
9 |
-
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: BanglaFeel Translator
|
3 |
+
emoji: 🌍💬
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: apache-2.0
|
9 |
+
app_port: 7860 # IMPORTANT: Tell Hugging Face which port your app EXPOSES
|
10 |
---
|
11 |
|
12 |
+
# BanglaFeel Translator
|
13 |
+
|
14 |
+
A Flask web application for English to Bengali transliteration using a custom-trained DualEncoderDecoder model.
|
15 |
+
|
16 |
+
## How to Use
|
17 |
+
|
18 |
+
Visit the deployed Space URL and type or paste English text into the input box. Click "Translate" to see the Bengali transliteration.
|
19 |
+
|
20 |
+
## Model Details
|
21 |
+
|
22 |
+
This model is a custom architecture (DualEncoderDecoder) combining T5 (csebuetnlp/banglat5) with a hybrid character CNN and word LSTM encoder.
|
23 |
+
* **Base T5 Model:** `csebuetnlp/banglat5`
|
24 |
+
* **Base Encoder Tokenizer:** `csebuetnlp/banglabert`
|
25 |
+
* **Custom Components:** CharCNN, WordLSTM, HybridEncoder
|
26 |
+
* Trained for English to Bengali transliteration.
|
27 |
+
|
28 |
+
## Intended Uses & Limitations
|
29 |
+
|
30 |
+
* **Intended Use:** Transliteration of English text (phonetically representing Bengali words) into Bengali script.
|
31 |
+
* **Limitations:**
|
32 |
+
* May not handle all English phonetic variations perfectly.
|
33 |
+
* Performance depends on the training data.
|
34 |
+
* Currently handles inputs up to 500 characters.
|
35 |
+
* The free hosting tier might experience cold starts.
|
36 |
+
|
37 |
+
## License
|
38 |
+
|
39 |
+
The code and model are licensed under the Apache License 2.0. See the `LICENSE` file for details.
|
app.py
ADDED
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from flask import Flask, request, jsonify, render_template
|
7 |
+
|
8 |
+
os.environ['HF_HUB_DISABLE_SYMLINKS_WARNING'] = '1'
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from transformers import T5Tokenizer, AutoTokenizer, T5ForConditionalGeneration
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
|
13 |
+
|
14 |
+
# Get the directory of the current script (app.py)
|
15 |
+
APP_ROOT = os.path.dirname(os.path.abspath(__file__))
|
16 |
+
MODEL_FILES_DIR = os.path.join(APP_ROOT, 'model_files') # Path to your model_files directory
|
17 |
+
|
18 |
+
# Ensure CFG.device is set to CPU for Hugging Face Spaces free tier
|
19 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Original
|
20 |
+
device = torch.device('cpu') # MODIFIED FOR HF SPACES
|
21 |
+
|
22 |
+
class CFG:
|
23 |
+
model_name = 'csebuetnlp/banglat5' # This is used for initial T5 model loading
|
24 |
+
encoder_name = 'csebuetnlp/banglabert' # This is used for initial encoder tokenizer loading
|
25 |
+
batch_size = 1
|
26 |
+
max_len = 512
|
27 |
+
seed = 42
|
28 |
+
device = device # Use the modified device
|
29 |
+
|
30 |
+
# ... (rest of your imports and set_seed function, CharCNNEncoder, WordLSTMEncoder, HybridEncoder, DualEncoderDecoder classes remain the same)
|
31 |
+
# Ensure these classes are present in your actual app.py
|
32 |
+
|
33 |
+
# The initial tokenizer loading below will try to download from the hub.
|
34 |
+
# This is okay, as load_checkpoint will later load your specific saved tokenizers
|
35 |
+
# from local files using local_files_only=True.
|
36 |
+
# If you wanted to avoid ANY hub download, you'd need to ensure your model_files/tokenizers
|
37 |
+
# are sufficient for T5Tokenizer.from_pretrained to work with local_files_only=True
|
38 |
+
# from the very start, which might require more config files in those dirs.
|
39 |
+
# For now, this setup is fine.
|
40 |
+
|
41 |
+
CFG.t5_tokenizer = T5Tokenizer.from_pretrained(
|
42 |
+
CFG.model_name,
|
43 |
+
legacy=False,
|
44 |
+
model_max_length=CFG.max_len
|
45 |
+
)
|
46 |
+
if CFG.t5_tokenizer.pad_token is None:
|
47 |
+
CFG.t5_tokenizer.pad_token = CFG.t5_tokenizer.eos_token
|
48 |
+
if CFG.t5_tokenizer.bos_token is None:
|
49 |
+
CFG.t5_tokenizer.bos_token = CFG.t5_tokenizer.eos_token
|
50 |
+
|
51 |
+
CFG.encoder_tokenizer = AutoTokenizer.from_pretrained(
|
52 |
+
CFG.encoder_name,
|
53 |
+
model_max_length=CFG.max_len
|
54 |
+
)
|
55 |
+
if CFG.encoder_tokenizer.pad_token is None:
|
56 |
+
CFG.encoder_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # This line might change vocab size if not already done
|
57 |
+
CFG.encoder_tokenizer.pad_token = '[PAD]'
|
58 |
+
|
59 |
+
|
60 |
+
def compute_max_char_len(texts): # Ensure this function is present
|
61 |
+
# ... (your implementation)
|
62 |
+
# If not used, you can remove it, but it was in your original code
|
63 |
+
# A placeholder if it was just for training:
|
64 |
+
if not texts or not any(isinstance(text, str) for text in texts):
|
65 |
+
return 50 # Default or error
|
66 |
+
return max(
|
67 |
+
len(word)
|
68 |
+
for text in texts
|
69 |
+
if isinstance(text, str)
|
70 |
+
for word in text.split()
|
71 |
+
) if any(text for text in texts if isinstance(text, str)) else 50
|
72 |
+
|
73 |
+
|
74 |
+
# --- START: PASTE YOUR CharCNNEncoder, WordLSTMEncoder, HybridEncoder, DualEncoderDecoder classes here ---
|
75 |
+
# (As provided in your original app.py)
|
76 |
+
# Make sure they are correctly defined before load_checkpoint
|
77 |
+
class CharCNNEncoder(nn.Module):
|
78 |
+
def __init__(self, char_vocab_size, char_embedding_dim, char_cnn_output_dim, kernel_sizes, num_filters, dropout=0.1):
|
79 |
+
super(CharCNNEncoder, self).__init__()
|
80 |
+
self.char_embedding = nn.Embedding(char_vocab_size, char_embedding_dim, padding_idx=0)
|
81 |
+
self.conv_layers = nn.ModuleList()
|
82 |
+
for ks, nf in zip(kernel_sizes, num_filters):
|
83 |
+
self.conv_layers.append(
|
84 |
+
nn.Sequential(
|
85 |
+
nn.Conv1d(char_embedding_dim, nf, kernel_size=ks, padding=ks // 2),
|
86 |
+
nn.ReLU(),
|
87 |
+
nn.AdaptiveMaxPool1d(1)
|
88 |
+
)
|
89 |
+
)
|
90 |
+
self.dropout = nn.Dropout(dropout)
|
91 |
+
self.output_projection = nn.Linear(sum(num_filters), char_cnn_output_dim)
|
92 |
+
|
93 |
+
def forward(self, char_input):
|
94 |
+
batch_size, seq_len, char_len = char_input.size()
|
95 |
+
char_input = char_input.view(-1, char_len)
|
96 |
+
char_emb = self.char_embedding(char_input)
|
97 |
+
char_emb = char_emb.permute(0, 2, 1)
|
98 |
+
conv_outputs = [conv(char_emb) for conv in self.conv_layers]
|
99 |
+
concat_output = torch.cat(conv_outputs, dim=1)
|
100 |
+
concat_output = concat_output.squeeze(-1)
|
101 |
+
concat_output = self.dropout(concat_output)
|
102 |
+
char_cnn_output = self.output_projection(concat_output)
|
103 |
+
char_cnn_output = char_cnn_output.view(batch_size, seq_len, -1)
|
104 |
+
return char_cnn_output
|
105 |
+
|
106 |
+
class WordLSTMEncoder(nn.Module):
|
107 |
+
def __init__(self, word_vocab_size, word_embedding_dim, word_lstm_hidden_dim, num_lstm_layers, dropout):
|
108 |
+
super(WordLSTMEncoder, self).__init__()
|
109 |
+
# Ensure CFG.encoder_tokenizer is loaded before this class is instantiated if padding_idx relies on it.
|
110 |
+
# The current code structure loads CFG.encoder_tokenizer globally first.
|
111 |
+
padding_idx_val = CFG.encoder_tokenizer.pad_token_id if hasattr(CFG, 'encoder_tokenizer') and CFG.encoder_tokenizer.pad_token_id is not None else 0
|
112 |
+
self.word_embedding = nn.Embedding(
|
113 |
+
word_vocab_size,
|
114 |
+
word_embedding_dim,
|
115 |
+
padding_idx=padding_idx_val
|
116 |
+
)
|
117 |
+
self.lstm = nn.LSTM(
|
118 |
+
word_embedding_dim,
|
119 |
+
word_lstm_hidden_dim,
|
120 |
+
num_layers=num_lstm_layers,
|
121 |
+
batch_first=True,
|
122 |
+
dropout=dropout,
|
123 |
+
bidirectional=True
|
124 |
+
)
|
125 |
+
self.output_projection = nn.Linear(2 * word_lstm_hidden_dim, word_lstm_hidden_dim)
|
126 |
+
|
127 |
+
def forward(self, word_input, sequence_lengths):
|
128 |
+
batch_size = word_input.size(0)
|
129 |
+
word_emb = self.word_embedding(word_input)
|
130 |
+
|
131 |
+
# Ensure sequence_lengths is on CPU for sorting and pack_padded_sequence
|
132 |
+
sequence_lengths_cpu = sequence_lengths.cpu()
|
133 |
+
|
134 |
+
# Handle cases where all sequence lengths might be zero, which can cause issues with sorting
|
135 |
+
if torch.all(sequence_lengths_cpu == 0):
|
136 |
+
# If all lengths are 0, LSTM output will be zeros.
|
137 |
+
# We need to create zero tensors of the expected shape.
|
138 |
+
# This is a simplified handling; a more robust solution might be needed
|
139 |
+
# depending on how zero-length sequences are meant to be processed.
|
140 |
+
lstm_out = torch.zeros(batch_size, word_input.size(1), self.lstm.hidden_size * 2, device=word_input.device)
|
141 |
+
hidden = torch.zeros(batch_size, self.lstm.hidden_size * 2, device=word_input.device)
|
142 |
+
return self.output_projection(hidden), lstm_out
|
143 |
+
|
144 |
+
sorted_lengths, sort_idx = sequence_lengths_cpu.sort(0, descending=True)
|
145 |
+
sorted_word_emb = word_emb[sort_idx]
|
146 |
+
|
147 |
+
# Filter out zero-length sequences before packing if pack_padded_sequence requires it
|
148 |
+
# For PyTorch versions where pack_padded_sequence handles zero lengths in sorted_lengths:
|
149 |
+
packed_word_emb = nn.utils.rnn.pack_padded_sequence(
|
150 |
+
sorted_word_emb,
|
151 |
+
sorted_lengths.clamp(min=1), # Ensure lengths are at least 1 for packing if issues arise
|
152 |
+
batch_first=True,
|
153 |
+
enforce_sorted=True # This is important
|
154 |
+
)
|
155 |
+
packed_lstm_out, (hidden_state, cell_state) = self.lstm(packed_word_emb)
|
156 |
+
lstm_out, _ = nn.utils.rnn.pad_packed_sequence(
|
157 |
+
packed_lstm_out,
|
158 |
+
batch_first=True,
|
159 |
+
total_length=word_input.size(1)
|
160 |
+
)
|
161 |
+
_, unsort_idx = sort_idx.sort(0)
|
162 |
+
lstm_out = lstm_out[unsort_idx]
|
163 |
+
|
164 |
+
# Process hidden state correctly for bidirectional LSTM
|
165 |
+
# hidden_state is (num_layers * num_directions, batch, hidden_size)
|
166 |
+
# We want the last layer's hidden states (forward and backward)
|
167 |
+
hidden_state = hidden_state.view(self.lstm.num_layers, 2, batch_size, self.lstm.hidden_size) # 2 for bidirectional
|
168 |
+
hidden_state_last_layer = hidden_state[-1] # Get the last layer
|
169 |
+
# Concatenate forward and backward hidden states: (batch, 2 * hidden_size)
|
170 |
+
final_hidden = torch.cat((hidden_state_last_layer[0], hidden_state_last_layer[1]), dim=1)
|
171 |
+
final_hidden = final_hidden[unsort_idx] # Unsort to original batch order
|
172 |
+
|
173 |
+
return self.output_projection(final_hidden), lstm_out
|
174 |
+
|
175 |
+
|
176 |
+
class HybridEncoder(nn.Module):
|
177 |
+
def __init__(self, char_cnn_encoder, word_lstm_encoder, hybrid_encoder_output_dim):
|
178 |
+
super(HybridEncoder, self).__init__()
|
179 |
+
self.char_cnn_encoder = char_cnn_encoder
|
180 |
+
self.word_lstm_encoder = word_lstm_encoder
|
181 |
+
self.char_hidden_size = char_cnn_encoder.output_projection.out_features
|
182 |
+
# For bidirectional LSTM, output is 2 * hidden_dim from WordLSTMEncoder's projection layer
|
183 |
+
self.lstm_projected_hidden_size = word_lstm_encoder.output_projection.out_features # This should be word_lstm_hidden_dim
|
184 |
+
# The actual output from LSTM itself before projection is 2 * lstm.hidden_size for sequence outputs
|
185 |
+
self.lstm_sequence_output_size = word_lstm_encoder.lstm.hidden_size * 2
|
186 |
+
|
187 |
+
# The output_projection should combine char_cnn_output and the sequence output of LSTM
|
188 |
+
self.output_projection = nn.Linear(self.char_hidden_size + self.lstm_sequence_output_size, hybrid_encoder_output_dim)
|
189 |
+
|
190 |
+
|
191 |
+
def forward(self, char_input, word_input, sequence_lengths):
|
192 |
+
batch_size = char_input.size(0)
|
193 |
+
max_seq_len = word_input.size(1) # Assuming word_input determines max_seq_len
|
194 |
+
|
195 |
+
char_cnn_output = self.char_cnn_encoder(char_input) # (batch_size, char_seq_len, char_cnn_output_dim)
|
196 |
+
|
197 |
+
# Ensure sequence_lengths is on the same device as the model/input
|
198 |
+
sequence_lengths = sequence_lengths.to(word_input.device)
|
199 |
+
_, lstm_sequence_output = self.word_lstm_encoder(word_input, sequence_lengths) # (batch_size, word_seq_len, 2 * lstm_hidden_dim)
|
200 |
+
|
201 |
+
# Pad/truncate char_cnn_output and lstm_sequence_output to a common max_seq_len if they differ
|
202 |
+
# This assumes char_input and word_input might correspond to different tokenization granularities
|
203 |
+
# For simplicity, let's assume they are aligned or word_input's seq_len is the target.
|
204 |
+
|
205 |
+
# Pad CharCNN outputs if its sequence length is less than max_seq_len from word_input
|
206 |
+
if char_cnn_output.size(1) < max_seq_len:
|
207 |
+
padding_size = max_seq_len - char_cnn_output.size(1)
|
208 |
+
char_cnn_output = F.pad(char_cnn_output, (0, 0, 0, padding_size), "constant", 0)
|
209 |
+
elif char_cnn_output.size(1) > max_seq_len:
|
210 |
+
char_cnn_output = char_cnn_output[:, :max_seq_len, :]
|
211 |
+
|
212 |
+
# Pad LSTM outputs if its sequence length is less than max_seq_len (should not happen if total_length in pad_packed_sequence is max_seq_len)
|
213 |
+
# This check is more of a safeguard.
|
214 |
+
if lstm_sequence_output.size(1) < max_seq_len:
|
215 |
+
padding_size = max_seq_len - lstm_sequence_output.size(1)
|
216 |
+
lstm_sequence_output = F.pad(lstm_sequence_output, (0, 0, 0, padding_size), "constant", 0)
|
217 |
+
elif lstm_sequence_output.size(1) > max_seq_len:
|
218 |
+
lstm_sequence_output = lstm_sequence_output[:, :max_seq_len, :]
|
219 |
+
|
220 |
+
hybrid_output_concat = torch.cat((char_cnn_output, lstm_sequence_output), dim=2)
|
221 |
+
hybrid_encoder_output = self.output_projection(hybrid_output_concat)
|
222 |
+
return hybrid_encoder_output
|
223 |
+
|
224 |
+
class DualEncoderDecoder(nn.Module):
|
225 |
+
def __init__(self, t5_model_name, hybrid_encoder, t5_tokenizer, freeze_t5=False):
|
226 |
+
super(DualEncoderDecoder, self).__init__()
|
227 |
+
self.t5 = T5ForConditionalGeneration.from_pretrained(t5_model_name)
|
228 |
+
self.t5_tokenizer = t5_tokenizer # Store tokenizer if needed for vocab size etc.
|
229 |
+
self.hybrid_encoder = hybrid_encoder
|
230 |
+
|
231 |
+
encoder_hidden_size = self.t5.config.d_model
|
232 |
+
hybrid_hidden_size = hybrid_encoder.output_projection.out_features # This is hybrid_encoder_output_dim
|
233 |
+
|
234 |
+
self.encoder_projection = nn.Linear(encoder_hidden_size + hybrid_hidden_size, encoder_hidden_size)
|
235 |
+
|
236 |
+
if freeze_t5:
|
237 |
+
for param in self.t5.parameters():
|
238 |
+
param.requires_grad = False
|
239 |
+
|
240 |
+
# Resize T5 token embeddings if tokenizer vocab size changed (e.g., by adding special tokens)
|
241 |
+
# This should ideally be done *after* loading CFG.t5_tokenizer in load_checkpoint
|
242 |
+
# if CFG.t5_tokenizer is the one tied to the model.
|
243 |
+
# self.t5.resize_token_embeddings(len(self.t5_tokenizer)) # Moved to load_checkpoint
|
244 |
+
|
245 |
+
def forward(self, input_ids, attention_mask, char_input, word_input, sequence_lengths, labels=None):
|
246 |
+
# T5 Encoder
|
247 |
+
t5_encoder_outputs_dict = self.t5.encoder(input_ids=input_ids, attention_mask=attention_mask, return_dict=True)
|
248 |
+
t5_encoder_last_hidden_state = t5_encoder_outputs_dict.last_hidden_state # (batch, seq_len_t5, d_model)
|
249 |
+
|
250 |
+
# Hybrid Encoder
|
251 |
+
# Ensure sequence_lengths is on the correct device for hybrid_encoder
|
252 |
+
sequence_lengths = sequence_lengths.to(char_input.device)
|
253 |
+
hybrid_encoder_output = self.hybrid_encoder(char_input, word_input, sequence_lengths) # (batch, seq_len_hybrid, hybrid_output_dim)
|
254 |
+
|
255 |
+
# Determine common sequence length for concatenation
|
256 |
+
# Typically, input_ids for T5 and word_input for hybrid encoder should have compatible sequence lengths.
|
257 |
+
# If they are from different tokenizations, alignment or choosing one as primary is needed.
|
258 |
+
# Assuming t5_encoder_last_hidden_state's seq_len is the target.
|
259 |
+
common_seq_len = t5_encoder_last_hidden_state.size(1)
|
260 |
+
|
261 |
+
# Pad or truncate hybrid_encoder_output to match common_seq_len
|
262 |
+
if hybrid_encoder_output.size(1) < common_seq_len:
|
263 |
+
padding_size = common_seq_len - hybrid_encoder_output.size(1)
|
264 |
+
hybrid_encoder_output = F.pad(hybrid_encoder_output, (0, 0, 0, padding_size), "constant", 0)
|
265 |
+
elif hybrid_encoder_output.size(1) > common_seq_len:
|
266 |
+
hybrid_encoder_output = hybrid_encoder_output[:, :common_seq_len, :]
|
267 |
+
|
268 |
+
# Concatenate along the feature dimension
|
269 |
+
concat_encoder_output = torch.cat((t5_encoder_last_hidden_state, hybrid_encoder_output), dim=2)
|
270 |
+
projected_encoder_output = self.encoder_projection(concat_encoder_output) # (batch, common_seq_len, d_model)
|
271 |
+
|
272 |
+
# Create BaseModelOutputWithPastAndCrossAttentions for T5 decoder
|
273 |
+
# The attention_mask here should correspond to the projected_encoder_output.
|
274 |
+
# If t5_encoder_last_hidden_state's seq_len was used, its attention_mask is appropriate.
|
275 |
+
encoder_outputs_for_decoder = BaseModelOutputWithPastAndCrossAttentions(
|
276 |
+
last_hidden_state=projected_encoder_output,
|
277 |
+
# past_key_values=None, # T5 internal
|
278 |
+
# hidden_states=None, # T5 internal
|
279 |
+
# attentions=None # T5 internal
|
280 |
+
)
|
281 |
+
|
282 |
+
# T5 Decoder
|
283 |
+
# The `attention_mask` passed to the T5 model here is for the *decoder's* cross-attention
|
284 |
+
# to the `encoder_outputs_for_decoder`. So it should match the sequence length of `projected_encoder_output`.
|
285 |
+
decoder_outputs = self.t5(
|
286 |
+
encoder_outputs=encoder_outputs_for_decoder, # Pass the combined & projected outputs
|
287 |
+
attention_mask=attention_mask, # This is the original T5 input attention mask, matching its seq_len
|
288 |
+
labels=labels,
|
289 |
+
return_dict=True,
|
290 |
+
use_cache=False # Important for training, can be True for faster inference if handled
|
291 |
+
)
|
292 |
+
return decoder_outputs
|
293 |
+
|
294 |
+
def generate(self, input_ids, attention_mask, char_input, word_input, sequence_lengths, max_length, num_beams):
|
295 |
+
# Similar to forward pass for encoder part
|
296 |
+
t5_encoder_outputs_dict = self.t5.encoder(input_ids=input_ids, attention_mask=attention_mask, return_dict=True)
|
297 |
+
t5_encoder_last_hidden_state = t5_encoder_outputs_dict.last_hidden_state
|
298 |
+
|
299 |
+
sequence_lengths = sequence_lengths.to(char_input.device)
|
300 |
+
hybrid_encoder_output = self.hybrid_encoder(char_input, word_input, sequence_lengths)
|
301 |
+
|
302 |
+
common_seq_len = t5_encoder_last_hidden_state.size(1)
|
303 |
+
|
304 |
+
if hybrid_encoder_output.size(1) < common_seq_len:
|
305 |
+
padding_size = common_seq_len - hybrid_encoder_output.size(1)
|
306 |
+
hybrid_encoder_output = F.pad(hybrid_encoder_output, (0, 0, 0, padding_size), "constant", 0)
|
307 |
+
elif hybrid_encoder_output.size(1) > common_seq_len:
|
308 |
+
hybrid_encoder_output = hybrid_encoder_output[:, :common_seq_len, :]
|
309 |
+
|
310 |
+
concat_encoder_output = torch.cat((t5_encoder_last_hidden_state, hybrid_encoder_output), dim=2)
|
311 |
+
projected_encoder_output = self.encoder_projection(concat_encoder_output)
|
312 |
+
|
313 |
+
encoder_outputs_for_generate = BaseModelOutputWithPastAndCrossAttentions(
|
314 |
+
last_hidden_state=projected_encoder_output
|
315 |
+
)
|
316 |
+
|
317 |
+
# Use T5's generate method
|
318 |
+
generated_ids_dict = self.t5.generate(
|
319 |
+
encoder_outputs=encoder_outputs_for_generate,
|
320 |
+
attention_mask=attention_mask, # Original T5 input attention mask
|
321 |
+
max_length=max_length,
|
322 |
+
num_beams=num_beams,
|
323 |
+
early_stopping=True,
|
324 |
+
use_cache=True, # Can be True for generation
|
325 |
+
return_dict_in_generate=True, # Ensures output is a dict-like object
|
326 |
+
# eos_token_id=self.t5_tokenizer.eos_token_id, # Good practice
|
327 |
+
# pad_token_id=self.t5_tokenizer.pad_token_id # Good practice
|
328 |
+
)
|
329 |
+
return generated_ids_dict.sequences # .sequences attribute contains the generated token ids
|
330 |
+
|
331 |
+
def load_checkpoint(path_to_checkpoint_file):
|
332 |
+
# path_to_checkpoint_file is now the full path to best_model.pth
|
333 |
+
if not os.path.exists(path_to_checkpoint_file):
|
334 |
+
print("No checkpoint file found at:", path_to_checkpoint_file)
|
335 |
+
# sys.exit(1) # Avoid exiting in a web app, raise an error or handle
|
336 |
+
raise FileNotFoundError(f"No checkpoint file found at: {path_to_checkpoint_file}")
|
337 |
+
|
338 |
+
print(f"Loading checkpoint from: {path_to_checkpoint_file}")
|
339 |
+
checkpoint = torch.load(path_to_checkpoint_file, map_location=CFG.device)
|
340 |
+
|
341 |
+
# checkpoint_dir is the directory containing best_model.pth, which is MODEL_FILES_DIR
|
342 |
+
checkpoint_dir = os.path.dirname(path_to_checkpoint_file)
|
343 |
+
|
344 |
+
# Path to the 'tokenizers' subdirectory within checkpoint_dir
|
345 |
+
tokenizer_base_save_path = os.path.join(checkpoint_dir, 'tokenizers')
|
346 |
+
|
347 |
+
t5_tokenizer_dir_path = os.path.join(tokenizer_base_save_path, 't5_tokenizer')
|
348 |
+
encoder_tokenizer_dir_path = os.path.join(tokenizer_base_save_path, 'encoders_tokenizer')
|
349 |
+
|
350 |
+
if not os.path.isdir(t5_tokenizer_dir_path):
|
351 |
+
raise FileNotFoundError(
|
352 |
+
f"T5 tokenizer directory not found: {t5_tokenizer_dir_path}. "
|
353 |
+
"Ensure tokenizers were saved correctly (e.g., using tokenizer.save_pretrained())."
|
354 |
+
)
|
355 |
+
if not os.path.isdir(encoder_tokenizer_dir_path):
|
356 |
+
raise FileNotFoundError(
|
357 |
+
f"Encoder tokenizer directory not found: {encoder_tokenizer_dir_path}. "
|
358 |
+
"Ensure tokenizers were saved correctly."
|
359 |
+
)
|
360 |
+
print(f"Loading T5 tokenizer from: {t5_tokenizer_dir_path}")
|
361 |
+
CFG.t5_tokenizer = T5Tokenizer.from_pretrained(
|
362 |
+
t5_tokenizer_dir_path,
|
363 |
+
legacy=False,
|
364 |
+
model_max_length=CFG.max_len,
|
365 |
+
local_files_only=True
|
366 |
+
)
|
367 |
+
if CFG.t5_tokenizer.pad_token is None: CFG.t5_tokenizer.pad_token = CFG.t5_tokenizer.eos_token
|
368 |
+
if CFG.t5_tokenizer.bos_token is None: CFG.t5_tokenizer.bos_token = CFG.t5_tokenizer.eos_token
|
369 |
+
|
370 |
+
print(f"Loading encoder tokenizer from: {encoder_tokenizer_dir_path}")
|
371 |
+
CFG.encoder_tokenizer = AutoTokenizer.from_pretrained(
|
372 |
+
encoder_tokenizer_dir_path,
|
373 |
+
model_max_length=CFG.max_len,
|
374 |
+
local_files_only=True
|
375 |
+
)
|
376 |
+
if CFG.encoder_tokenizer.pad_token is None:
|
377 |
+
print(f"Warning: Loaded encoder tokenizer from {encoder_tokenizer_dir_path} has no pad_token defined in its config.")
|
378 |
+
# If it was added during training and saved, it should be there.
|
379 |
+
# If it's missing, and your WordLSTMEncoder relies on a specific pad_token_id,
|
380 |
+
# you might need to manually set it here if the saved config doesn't have it.
|
381 |
+
# e.g., CFG.encoder_tokenizer.pad_token = '[PAD]'
|
382 |
+
# CFG.encoder_tokenizer.pad_token_id = CFG.encoder_tokenizer.convert_tokens_to_ids('[PAD]')
|
383 |
+
# However, if add_special_tokens({'pad_token': '[PAD]'}) was called before saving,
|
384 |
+
# it should be part of the saved tokenizer's configuration.
|
385 |
+
|
386 |
+
loaded_config_from_checkpoint = checkpoint['config'] # Renamed to avoid conflict
|
387 |
+
loaded_char_to_id = checkpoint['char_to_id']
|
388 |
+
loaded_id_to_char = checkpoint['id_to_char']
|
389 |
+
model_architecture = checkpoint['model_architecture']
|
390 |
+
|
391 |
+
# Update CFG with specifics from the loaded config if they exist
|
392 |
+
for key, value in loaded_config_from_checkpoint.items():
|
393 |
+
setattr(CFG, key, value)
|
394 |
+
|
395 |
+
# CRITICAL: Re-assign CFG.device after loading config, in case it was saved in checkpoint
|
396 |
+
# Or better, ensure device is not part of saved 'config' if you want to control it externally.
|
397 |
+
# For HF Spaces, we want CPU.
|
398 |
+
CFG.device = device # Ensure our desired device (CPU) is set
|
399 |
+
|
400 |
+
loaded_max_char_len = model_architecture.get('max_char_len', 50) # Default if not in checkpoint
|
401 |
+
|
402 |
+
# Re-initialize model components with parameters from the checkpoint
|
403 |
+
char_cnn_encoder = CharCNNEncoder(
|
404 |
+
char_vocab_size=model_architecture['char_vocab_size'],
|
405 |
+
char_embedding_dim=model_architecture['char_embedding_dim'],
|
406 |
+
char_cnn_output_dim=model_architecture['char_cnn_output_dim'],
|
407 |
+
kernel_sizes=model_architecture['kernel_sizes'],
|
408 |
+
num_filters=model_architecture['num_filters'],
|
409 |
+
dropout=model_architecture.get('dropout', 0.1) # Use .get for robustness
|
410 |
+
)
|
411 |
+
|
412 |
+
# Ensure word_vocab_size matches the re-loaded encoder_tokenizer's vocab size
|
413 |
+
# The one in model_architecture was from training time.
|
414 |
+
current_encoder_vocab_size = len(CFG.encoder_tokenizer)
|
415 |
+
if model_architecture['word_vocab_size'] != current_encoder_vocab_size:
|
416 |
+
print(f"Warning: Word vocab size mismatch. Checkpoint: {model_architecture['word_vocab_size']}, "
|
417 |
+
f"Loaded CFG.encoder_tokenizer: {current_encoder_vocab_size}. Using loaded tokenizer's size.")
|
418 |
+
|
419 |
+
word_lstm_encoder = WordLSTMEncoder(
|
420 |
+
word_vocab_size=current_encoder_vocab_size, # Use current vocab size
|
421 |
+
word_embedding_dim=model_architecture['word_embedding_dim'],
|
422 |
+
word_lstm_hidden_dim=model_architecture['word_lstm_hidden_dim'],
|
423 |
+
num_lstm_layers=model_architecture['num_lstm_layers'],
|
424 |
+
dropout=model_architecture.get('dropout', 0.1)
|
425 |
+
)
|
426 |
+
hybrid_encoder = HybridEncoder(
|
427 |
+
char_cnn_encoder,
|
428 |
+
word_lstm_encoder,
|
429 |
+
hybrid_encoder_output_dim=model_architecture['hybrid_encoder_output_dim']
|
430 |
+
)
|
431 |
+
|
432 |
+
# Use the model_name from the *checkpoint's config* for T5 base
|
433 |
+
# This ensures consistency with the trained model's base.
|
434 |
+
model_base_name_for_t5 = loaded_config_from_checkpoint.get('model_name', CFG.model_name)
|
435 |
+
print(f"Initializing DualEncoderDecoder with T5 base: {model_base_name_for_t5}")
|
436 |
+
|
437 |
+
model = DualEncoderDecoder(
|
438 |
+
t5_model_name=model_base_name_for_t5,
|
439 |
+
hybrid_encoder=hybrid_encoder,
|
440 |
+
t5_tokenizer=CFG.t5_tokenizer # Pass the loaded T5 tokenizer
|
441 |
+
)
|
442 |
+
|
443 |
+
# Resize T5 token embeddings based on the *loaded* CFG.t5_tokenizer
|
444 |
+
# This is important if CFG.t5_tokenizer (loaded from local files) has a different vocab size
|
445 |
+
# than the one from T5ForConditionalGeneration.from_pretrained(model_base_name_for_t5)
|
446 |
+
model.t5.resize_token_embeddings(len(CFG.t5_tokenizer))
|
447 |
+
|
448 |
+
print("Loading model state_dict...")
|
449 |
+
# Use strict=False if you have intentional mismatches, e.g., if encoder_tokenizer vocab changed
|
450 |
+
# and WordLSTM embedding size changed. Otherwise, strict=True is safer.
|
451 |
+
# Given the warnings and adjustments for vocab sizes, strict=False might be necessary
|
452 |
+
# if the embedding layer for WordLSTMEncoder was reinitialized with a different size.
|
453 |
+
model.load_state_dict(checkpoint['model_state_dict'], strict=False)
|
454 |
+
model.to(CFG.device)
|
455 |
+
model.eval()
|
456 |
+
print("Model loaded successfully.")
|
457 |
+
return model, loaded_char_to_id, loaded_id_to_char, loaded_max_char_len
|
458 |
+
|
459 |
+
|
460 |
+
# -------------
|
461 |
+
# Helper methods (tokenize_characters, pad_sequence, process_input)
|
462 |
+
# Ensure these are present and correct as per your original file
|
463 |
+
# -------------
|
464 |
+
def tokenize_characters(word, char_to_id): # Ensure char_to_id has <UNK> and <PAD>
|
465 |
+
# Default to <UNK> if char_to_id is not available or char not found
|
466 |
+
unk_token_id = char_to_id.get("<UNK>", 0) # Assuming 0 could be a fallback for <UNK> if not explicitly defined
|
467 |
+
return [char_to_id.get(char, unk_token_id) for char in word]
|
468 |
+
|
469 |
+
def pad_sequence(sequence, max_length, pad_value): # Ensure pad_value is valid
|
470 |
+
if len(sequence) > max_length:
|
471 |
+
sequence = sequence[:max_length]
|
472 |
+
return sequence + [pad_value] * (max_length - len(sequence))
|
473 |
+
|
474 |
+
def process_input(text, t5_tokenizer, encoder_tokenizer, char_to_id, current_max_char_len, max_token_len):
|
475 |
+
# Use current_max_char_len passed from loaded checkpoint
|
476 |
+
# Use max_token_len for t5_tokenizer and encoder_tokenizer max_length
|
477 |
+
|
478 |
+
t5_inputs = t5_tokenizer(
|
479 |
+
text,
|
480 |
+
return_tensors='pt',
|
481 |
+
padding='max_length',
|
482 |
+
truncation=True,
|
483 |
+
max_length=max_token_len, # Use max_token_len
|
484 |
+
add_special_tokens=True
|
485 |
+
)
|
486 |
+
encoder_inputs = encoder_tokenizer(
|
487 |
+
text,
|
488 |
+
return_tensors='pt',
|
489 |
+
padding='max_length',
|
490 |
+
truncation=True,
|
491 |
+
max_length=max_token_len # Use max_token_len
|
492 |
+
)
|
493 |
+
|
494 |
+
# Squeeze to remove batch dim if batch_size is 1, then unsqueeze later if model expects batch dim
|
495 |
+
# Assuming single instance processing here.
|
496 |
+
t5_input_ids_squeezed = t5_inputs['input_ids'].squeeze(0) # (seq_len)
|
497 |
+
t5_attention_mask_squeezed = t5_inputs['attention_mask'].squeeze(0) # (seq_len)
|
498 |
+
encoder_input_ids_squeezed = encoder_inputs['input_ids'].squeeze(0) # (seq_len)
|
499 |
+
# encoder_attention_mask_squeezed = encoder_inputs['attention_mask'].squeeze(0) # (seq_len)
|
500 |
+
|
501 |
+
# Max sequence length after tokenization for this specific input
|
502 |
+
actual_max_seq_len = encoder_input_ids_squeezed.shape[0]
|
503 |
+
|
504 |
+
char_input_tensor = torch.zeros((actual_max_seq_len, current_max_char_len), dtype=torch.long)
|
505 |
+
|
506 |
+
# Get pad_token_id for characters, ensure <PAD> is in char_to_id
|
507 |
+
char_pad_id = char_to_id.get("<PAD>", 0) # Default to 0 if <PAD> not in char_to_id
|
508 |
+
|
509 |
+
for j in range(actual_max_seq_len):
|
510 |
+
token_id = encoder_input_ids_squeezed[j].item()
|
511 |
+
# Avoid decoding special tokens like [PAD], [CLS], [SEP] into words for char tokenization
|
512 |
+
# if token_id in encoder_tokenizer.all_special_ids:
|
513 |
+
if token_id == encoder_tokenizer.pad_token_id or \
|
514 |
+
token_id == encoder_tokenizer.cls_token_id or \
|
515 |
+
token_id == encoder_tokenizer.sep_token_id or \
|
516 |
+
token_id == encoder_tokenizer.eos_token_id or \
|
517 |
+
token_id == encoder_tokenizer.bos_token_id:
|
518 |
+
word = "" # Treat special tokens as empty for char processing or handle as needed
|
519 |
+
else:
|
520 |
+
word = encoder_tokenizer.decode([token_id], skip_special_tokens=True).strip()
|
521 |
+
|
522 |
+
if not word: # Empty word or special token
|
523 |
+
char_ids = [char_pad_id] * current_max_char_len # Pad with <PAD> char id
|
524 |
+
else:
|
525 |
+
char_ids = tokenize_characters(word, char_to_id)
|
526 |
+
char_ids = pad_sequence(char_ids, current_max_char_len, char_pad_id)
|
527 |
+
|
528 |
+
char_input_tensor[j, :] = torch.tensor(char_ids, dtype=torch.long)
|
529 |
+
|
530 |
+
# sequence_lengths should be the sum of attention_mask for the encoder_input_ids
|
531 |
+
# This is for the word-level sequence length used by WordLSTMEncoder
|
532 |
+
# Squeeze if it's shape (1, 1) from sum, to get a scalar tensor if batch size is 1
|
533 |
+
sequence_lengths_tensor = encoder_inputs['attention_mask'].sum(dim=1).long().squeeze()
|
534 |
+
if sequence_lengths_tensor.ndim == 0: # If it became a 0-dim tensor (scalar)
|
535 |
+
sequence_lengths_tensor = sequence_lengths_tensor.unsqueeze(0) # Make it (1,) for consistency if batching
|
536 |
+
|
537 |
+
return {
|
538 |
+
# Unsqueeze(0) to add batch dimension back for the model
|
539 |
+
't5_input_ids': t5_input_ids_squeezed.unsqueeze(0).to(CFG.device),
|
540 |
+
't5_attention_mask': t5_attention_mask_squeezed.unsqueeze(0).to(CFG.device),
|
541 |
+
'encoder_input_ids': encoder_input_ids_squeezed.unsqueeze(0).to(CFG.device),
|
542 |
+
# 'encoder_attention_mask' is not directly used by your model.generate, t5_attention_mask is used
|
543 |
+
'char_input': char_input_tensor.unsqueeze(0).to(CFG.device),
|
544 |
+
'sequence_lengths': sequence_lengths_tensor.to(CFG.device) # Should be (batch_size,)
|
545 |
+
}
|
546 |
+
|
547 |
+
|
548 |
+
# ----------------------------
|
549 |
+
# FLASK SETUP
|
550 |
+
# ----------------------------
|
551 |
+
app = Flask(__name__)
|
552 |
+
|
553 |
+
# MODIFIED: Define checkpoint path relative to MODEL_FILES_DIR
|
554 |
+
checkpoint_file_path = os.path.join(MODEL_FILES_DIR, "best_model.pth")
|
555 |
+
|
556 |
+
# Load your trained model and dictionaries ONCE at startup
|
557 |
+
print("Initializing model...")
|
558 |
+
try:
|
559 |
+
# model, char_to_id, id_to_char, max_char_len_loaded = load_checkpoint(checkpoint_file_path)
|
560 |
+
# Re-assign to global/module-level variables if you need them outside this scope,
|
561 |
+
# or pass them around. For Flask app, making them global for handlers is common.
|
562 |
+
loaded_model, loaded_char_to_id, loaded_id_to_char, loaded_max_char_len = load_checkpoint(checkpoint_file_path)
|
563 |
+
except Exception as e:
|
564 |
+
print(f"FATAL: Could not load model on startup: {e}")
|
565 |
+
# In a real app, you might want to prevent Flask from starting or return errors
|
566 |
+
# sys.exit(1) # Not ideal for a web server trying to start
|
567 |
+
loaded_model = None # Indicate model loading failed
|
568 |
+
|
569 |
+
@app.route('/')
|
570 |
+
def index():
|
571 |
+
return render_template('index.html')
|
572 |
+
|
573 |
+
@app.route('/translate', methods=['POST'])
|
574 |
+
def translate_text():
|
575 |
+
if loaded_model is None: # Check if model failed to load
|
576 |
+
return jsonify({"error": "Model is not available. Please check server logs."}), 500
|
577 |
+
|
578 |
+
data = request.get_json()
|
579 |
+
input_text = data.get('text', '')
|
580 |
+
if not input_text:
|
581 |
+
return jsonify({"error": "No text provided"}), 400
|
582 |
+
|
583 |
+
try:
|
584 |
+
# Process the input through your pipeline
|
585 |
+
# Use the globally loaded CFG.t5_tokenizer, CFG.encoder_tokenizer,
|
586 |
+
# loaded_char_to_id, and loaded_max_char_len
|
587 |
+
inputs = process_input(
|
588 |
+
input_text,
|
589 |
+
CFG.t5_tokenizer,
|
590 |
+
CFG.encoder_tokenizer,
|
591 |
+
loaded_char_to_id,
|
592 |
+
loaded_max_char_len, # Use the max_char_len loaded from checkpoint
|
593 |
+
CFG.max_len # Use CFG.max_len for token sequence length
|
594 |
+
)
|
595 |
+
|
596 |
+
# Generate translation
|
597 |
+
with torch.no_grad():
|
598 |
+
generated_ids = loaded_model.generate( # Use the loaded_model
|
599 |
+
inputs['t5_input_ids'],
|
600 |
+
inputs['t5_attention_mask'],
|
601 |
+
inputs['char_input'],
|
602 |
+
inputs['encoder_input_ids'], # This is word_input for HybridEncoder
|
603 |
+
inputs['sequence_lengths'],
|
604 |
+
max_length=CFG.max_len, # Max generation length
|
605 |
+
num_beams=4
|
606 |
+
)
|
607 |
+
|
608 |
+
translation = CFG.t5_tokenizer.decode(
|
609 |
+
generated_ids[0],
|
610 |
+
skip_special_tokens=True,
|
611 |
+
clean_up_tokenization_spaces=True
|
612 |
+
).strip()
|
613 |
+
|
614 |
+
return jsonify({"translation": translation})
|
615 |
+
except Exception as e:
|
616 |
+
print(f"Error during translation: {e}") # Log the error
|
617 |
+
# import traceback
|
618 |
+
# traceback.print_exc() # For more detailed logs during debugging
|
619 |
+
return jsonify({"error": "An error occurred during translation."}), 500
|
620 |
+
|
621 |
+
if __name__ == '__main__':
|
622 |
+
# Port for Hugging Face Spaces is usually set via PORT environment variable
|
623 |
+
port = int(os.environ.get("PORT", 7860))
|
624 |
+
# For local testing, debug=True is fine. For HF Spaces, it will be run by their infrastructure.
|
625 |
+
# Setting debug=False for production-like environments.
|
626 |
+
# The host='0.0.0.0' makes it accessible externally (needed for Docker/HF Spaces).
|
627 |
+
app.run(host='0.0.0.0', port=port, debug=False)
|
model_files/tokenizers/encoders_tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
model_files/tokenizers/encoders_tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model_files/tokenizers/encoders_tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"full_tokenizer_file": null,
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"sep_token": "[SEP]",
|
56 |
+
"stride": 0,
|
57 |
+
"strip_accents": null,
|
58 |
+
"tokenize_chinese_chars": false,
|
59 |
+
"tokenizer_class": "ElectraTokenizer",
|
60 |
+
"truncation_side": "right",
|
61 |
+
"truncation_strategy": "longest_first",
|
62 |
+
"unk_token": "[UNK]"
|
63 |
+
}
|
model_files/tokenizers/encoders_tokenizer/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model_files/tokenizers/t5_tokenizer/added_tokens.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<extra_id_0>": 32099,
|
3 |
+
"<extra_id_10>": 32089,
|
4 |
+
"<extra_id_11>": 32088,
|
5 |
+
"<extra_id_12>": 32087,
|
6 |
+
"<extra_id_13>": 32086,
|
7 |
+
"<extra_id_14>": 32085,
|
8 |
+
"<extra_id_15>": 32084,
|
9 |
+
"<extra_id_16>": 32083,
|
10 |
+
"<extra_id_17>": 32082,
|
11 |
+
"<extra_id_18>": 32081,
|
12 |
+
"<extra_id_19>": 32080,
|
13 |
+
"<extra_id_1>": 32098,
|
14 |
+
"<extra_id_20>": 32079,
|
15 |
+
"<extra_id_21>": 32078,
|
16 |
+
"<extra_id_22>": 32077,
|
17 |
+
"<extra_id_23>": 32076,
|
18 |
+
"<extra_id_24>": 32075,
|
19 |
+
"<extra_id_25>": 32074,
|
20 |
+
"<extra_id_26>": 32073,
|
21 |
+
"<extra_id_27>": 32072,
|
22 |
+
"<extra_id_28>": 32071,
|
23 |
+
"<extra_id_29>": 32070,
|
24 |
+
"<extra_id_2>": 32097,
|
25 |
+
"<extra_id_30>": 32069,
|
26 |
+
"<extra_id_31>": 32068,
|
27 |
+
"<extra_id_32>": 32067,
|
28 |
+
"<extra_id_33>": 32066,
|
29 |
+
"<extra_id_34>": 32065,
|
30 |
+
"<extra_id_35>": 32064,
|
31 |
+
"<extra_id_36>": 32063,
|
32 |
+
"<extra_id_37>": 32062,
|
33 |
+
"<extra_id_38>": 32061,
|
34 |
+
"<extra_id_39>": 32060,
|
35 |
+
"<extra_id_3>": 32096,
|
36 |
+
"<extra_id_40>": 32059,
|
37 |
+
"<extra_id_41>": 32058,
|
38 |
+
"<extra_id_42>": 32057,
|
39 |
+
"<extra_id_43>": 32056,
|
40 |
+
"<extra_id_44>": 32055,
|
41 |
+
"<extra_id_45>": 32054,
|
42 |
+
"<extra_id_46>": 32053,
|
43 |
+
"<extra_id_47>": 32052,
|
44 |
+
"<extra_id_48>": 32051,
|
45 |
+
"<extra_id_49>": 32050,
|
46 |
+
"<extra_id_4>": 32095,
|
47 |
+
"<extra_id_50>": 32049,
|
48 |
+
"<extra_id_51>": 32048,
|
49 |
+
"<extra_id_52>": 32047,
|
50 |
+
"<extra_id_53>": 32046,
|
51 |
+
"<extra_id_54>": 32045,
|
52 |
+
"<extra_id_55>": 32044,
|
53 |
+
"<extra_id_56>": 32043,
|
54 |
+
"<extra_id_57>": 32042,
|
55 |
+
"<extra_id_58>": 32041,
|
56 |
+
"<extra_id_59>": 32040,
|
57 |
+
"<extra_id_5>": 32094,
|
58 |
+
"<extra_id_60>": 32039,
|
59 |
+
"<extra_id_61>": 32038,
|
60 |
+
"<extra_id_62>": 32037,
|
61 |
+
"<extra_id_63>": 32036,
|
62 |
+
"<extra_id_64>": 32035,
|
63 |
+
"<extra_id_65>": 32034,
|
64 |
+
"<extra_id_66>": 32033,
|
65 |
+
"<extra_id_67>": 32032,
|
66 |
+
"<extra_id_68>": 32031,
|
67 |
+
"<extra_id_69>": 32030,
|
68 |
+
"<extra_id_6>": 32093,
|
69 |
+
"<extra_id_70>": 32029,
|
70 |
+
"<extra_id_71>": 32028,
|
71 |
+
"<extra_id_72>": 32027,
|
72 |
+
"<extra_id_73>": 32026,
|
73 |
+
"<extra_id_74>": 32025,
|
74 |
+
"<extra_id_75>": 32024,
|
75 |
+
"<extra_id_76>": 32023,
|
76 |
+
"<extra_id_77>": 32022,
|
77 |
+
"<extra_id_78>": 32021,
|
78 |
+
"<extra_id_79>": 32020,
|
79 |
+
"<extra_id_7>": 32092,
|
80 |
+
"<extra_id_80>": 32019,
|
81 |
+
"<extra_id_81>": 32018,
|
82 |
+
"<extra_id_82>": 32017,
|
83 |
+
"<extra_id_83>": 32016,
|
84 |
+
"<extra_id_84>": 32015,
|
85 |
+
"<extra_id_85>": 32014,
|
86 |
+
"<extra_id_86>": 32013,
|
87 |
+
"<extra_id_87>": 32012,
|
88 |
+
"<extra_id_88>": 32011,
|
89 |
+
"<extra_id_89>": 32010,
|
90 |
+
"<extra_id_8>": 32091,
|
91 |
+
"<extra_id_90>": 32009,
|
92 |
+
"<extra_id_91>": 32008,
|
93 |
+
"<extra_id_92>": 32007,
|
94 |
+
"<extra_id_93>": 32006,
|
95 |
+
"<extra_id_94>": 32005,
|
96 |
+
"<extra_id_95>": 32004,
|
97 |
+
"<extra_id_96>": 32003,
|
98 |
+
"<extra_id_97>": 32002,
|
99 |
+
"<extra_id_98>": 32001,
|
100 |
+
"<extra_id_99>": 32000,
|
101 |
+
"<extra_id_9>": 32090,
|
102 |
+
"<extra_token_0>": 32101,
|
103 |
+
"<extra_token_10>": 32111,
|
104 |
+
"<extra_token_11>": 32112,
|
105 |
+
"<extra_token_12>": 32113,
|
106 |
+
"<extra_token_13>": 32114,
|
107 |
+
"<extra_token_14>": 32115,
|
108 |
+
"<extra_token_15>": 32116,
|
109 |
+
"<extra_token_16>": 32117,
|
110 |
+
"<extra_token_17>": 32118,
|
111 |
+
"<extra_token_18>": 32119,
|
112 |
+
"<extra_token_19>": 32120,
|
113 |
+
"<extra_token_1>": 32102,
|
114 |
+
"<extra_token_20>": 32121,
|
115 |
+
"<extra_token_21>": 32122,
|
116 |
+
"<extra_token_22>": 32123,
|
117 |
+
"<extra_token_23>": 32124,
|
118 |
+
"<extra_token_24>": 32125,
|
119 |
+
"<extra_token_25>": 32126,
|
120 |
+
"<extra_token_26>": 32127,
|
121 |
+
"<extra_token_2>": 32103,
|
122 |
+
"<extra_token_3>": 32104,
|
123 |
+
"<extra_token_4>": 32105,
|
124 |
+
"<extra_token_5>": 32106,
|
125 |
+
"<extra_token_6>": 32107,
|
126 |
+
"<extra_token_7>": 32108,
|
127 |
+
"<extra_token_8>": 32109,
|
128 |
+
"<extra_token_9>": 32110,
|
129 |
+
"<s>": 32100
|
130 |
+
}
|
model_files/tokenizers/t5_tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<s>",
|
4 |
+
"</s>",
|
5 |
+
"<pad>",
|
6 |
+
"<extra_id_0>",
|
7 |
+
"<extra_id_1>",
|
8 |
+
"<extra_id_2>",
|
9 |
+
"<extra_id_3>",
|
10 |
+
"<extra_id_4>",
|
11 |
+
"<extra_id_5>",
|
12 |
+
"<extra_id_6>",
|
13 |
+
"<extra_id_7>",
|
14 |
+
"<extra_id_8>",
|
15 |
+
"<extra_id_9>",
|
16 |
+
"<extra_id_10>",
|
17 |
+
"<extra_id_11>",
|
18 |
+
"<extra_id_12>",
|
19 |
+
"<extra_id_13>",
|
20 |
+
"<extra_id_14>",
|
21 |
+
"<extra_id_15>",
|
22 |
+
"<extra_id_16>",
|
23 |
+
"<extra_id_17>",
|
24 |
+
"<extra_id_18>",
|
25 |
+
"<extra_id_19>",
|
26 |
+
"<extra_id_20>",
|
27 |
+
"<extra_id_21>",
|
28 |
+
"<extra_id_22>",
|
29 |
+
"<extra_id_23>",
|
30 |
+
"<extra_id_24>",
|
31 |
+
"<extra_id_25>",
|
32 |
+
"<extra_id_26>",
|
33 |
+
"<extra_id_27>",
|
34 |
+
"<extra_id_28>",
|
35 |
+
"<extra_id_29>",
|
36 |
+
"<extra_id_30>",
|
37 |
+
"<extra_id_31>",
|
38 |
+
"<extra_id_32>",
|
39 |
+
"<extra_id_33>",
|
40 |
+
"<extra_id_34>",
|
41 |
+
"<extra_id_35>",
|
42 |
+
"<extra_id_36>",
|
43 |
+
"<extra_id_37>",
|
44 |
+
"<extra_id_38>",
|
45 |
+
"<extra_id_39>",
|
46 |
+
"<extra_id_40>",
|
47 |
+
"<extra_id_41>",
|
48 |
+
"<extra_id_42>",
|
49 |
+
"<extra_id_43>",
|
50 |
+
"<extra_id_44>",
|
51 |
+
"<extra_id_45>",
|
52 |
+
"<extra_id_46>",
|
53 |
+
"<extra_id_47>",
|
54 |
+
"<extra_id_48>",
|
55 |
+
"<extra_id_49>",
|
56 |
+
"<extra_id_50>",
|
57 |
+
"<extra_id_51>",
|
58 |
+
"<extra_id_52>",
|
59 |
+
"<extra_id_53>",
|
60 |
+
"<extra_id_54>",
|
61 |
+
"<extra_id_55>",
|
62 |
+
"<extra_id_56>",
|
63 |
+
"<extra_id_57>",
|
64 |
+
"<extra_id_58>",
|
65 |
+
"<extra_id_59>",
|
66 |
+
"<extra_id_60>",
|
67 |
+
"<extra_id_61>",
|
68 |
+
"<extra_id_62>",
|
69 |
+
"<extra_id_63>",
|
70 |
+
"<extra_id_64>",
|
71 |
+
"<extra_id_65>",
|
72 |
+
"<extra_id_66>",
|
73 |
+
"<extra_id_67>",
|
74 |
+
"<extra_id_68>",
|
75 |
+
"<extra_id_69>",
|
76 |
+
"<extra_id_70>",
|
77 |
+
"<extra_id_71>",
|
78 |
+
"<extra_id_72>",
|
79 |
+
"<extra_id_73>",
|
80 |
+
"<extra_id_74>",
|
81 |
+
"<extra_id_75>",
|
82 |
+
"<extra_id_76>",
|
83 |
+
"<extra_id_77>",
|
84 |
+
"<extra_id_78>",
|
85 |
+
"<extra_id_79>",
|
86 |
+
"<extra_id_80>",
|
87 |
+
"<extra_id_81>",
|
88 |
+
"<extra_id_82>",
|
89 |
+
"<extra_id_83>",
|
90 |
+
"<extra_id_84>",
|
91 |
+
"<extra_id_85>",
|
92 |
+
"<extra_id_86>",
|
93 |
+
"<extra_id_87>",
|
94 |
+
"<extra_id_88>",
|
95 |
+
"<extra_id_89>",
|
96 |
+
"<extra_id_90>",
|
97 |
+
"<extra_id_91>",
|
98 |
+
"<extra_id_92>",
|
99 |
+
"<extra_id_93>",
|
100 |
+
"<extra_id_94>",
|
101 |
+
"<extra_id_95>",
|
102 |
+
"<extra_id_96>",
|
103 |
+
"<extra_id_97>",
|
104 |
+
"<extra_id_98>",
|
105 |
+
"<extra_id_99>"
|
106 |
+
],
|
107 |
+
"bos_token": {
|
108 |
+
"content": "</s>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false
|
113 |
+
},
|
114 |
+
"eos_token": {
|
115 |
+
"content": "</s>",
|
116 |
+
"lstrip": false,
|
117 |
+
"normalized": false,
|
118 |
+
"rstrip": false,
|
119 |
+
"single_word": false
|
120 |
+
},
|
121 |
+
"pad_token": {
|
122 |
+
"content": "<pad>",
|
123 |
+
"lstrip": false,
|
124 |
+
"normalized": false,
|
125 |
+
"rstrip": false,
|
126 |
+
"single_word": false
|
127 |
+
},
|
128 |
+
"unk_token": {
|
129 |
+
"content": "<unk>",
|
130 |
+
"lstrip": false,
|
131 |
+
"normalized": false,
|
132 |
+
"rstrip": false,
|
133 |
+
"single_word": false
|
134 |
+
}
|
135 |
+
}
|
model_files/tokenizers/t5_tokenizer/spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dcab96935a2a51b1461c84e44c952ea8a3640c8bc3e2c6ae7a21d855454ae27
|
3 |
+
size 1111492
|
model_files/tokenizers/t5_tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,1169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<pad>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "</s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<unk>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"32000": {
|
29 |
+
"content": "<extra_id_99>",
|
30 |
+
"lstrip": true,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": true,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"32001": {
|
37 |
+
"content": "<extra_id_98>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": true,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"32002": {
|
45 |
+
"content": "<extra_id_97>",
|
46 |
+
"lstrip": true,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": true,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"32003": {
|
53 |
+
"content": "<extra_id_96>",
|
54 |
+
"lstrip": true,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": true,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"32004": {
|
61 |
+
"content": "<extra_id_95>",
|
62 |
+
"lstrip": true,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": true,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"32005": {
|
69 |
+
"content": "<extra_id_94>",
|
70 |
+
"lstrip": true,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": true,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"32006": {
|
77 |
+
"content": "<extra_id_93>",
|
78 |
+
"lstrip": true,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": true,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"32007": {
|
85 |
+
"content": "<extra_id_92>",
|
86 |
+
"lstrip": true,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": true,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"32008": {
|
93 |
+
"content": "<extra_id_91>",
|
94 |
+
"lstrip": true,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": true,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"32009": {
|
101 |
+
"content": "<extra_id_90>",
|
102 |
+
"lstrip": true,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": true,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"32010": {
|
109 |
+
"content": "<extra_id_89>",
|
110 |
+
"lstrip": true,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": true,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"32011": {
|
117 |
+
"content": "<extra_id_88>",
|
118 |
+
"lstrip": true,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": true,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"32012": {
|
125 |
+
"content": "<extra_id_87>",
|
126 |
+
"lstrip": true,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": true,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"32013": {
|
133 |
+
"content": "<extra_id_86>",
|
134 |
+
"lstrip": true,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": true,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"32014": {
|
141 |
+
"content": "<extra_id_85>",
|
142 |
+
"lstrip": true,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": true,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"32015": {
|
149 |
+
"content": "<extra_id_84>",
|
150 |
+
"lstrip": true,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": true,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
},
|
156 |
+
"32016": {
|
157 |
+
"content": "<extra_id_83>",
|
158 |
+
"lstrip": true,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": true,
|
161 |
+
"single_word": false,
|
162 |
+
"special": true
|
163 |
+
},
|
164 |
+
"32017": {
|
165 |
+
"content": "<extra_id_82>",
|
166 |
+
"lstrip": true,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": true,
|
169 |
+
"single_word": false,
|
170 |
+
"special": true
|
171 |
+
},
|
172 |
+
"32018": {
|
173 |
+
"content": "<extra_id_81>",
|
174 |
+
"lstrip": true,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": true,
|
177 |
+
"single_word": false,
|
178 |
+
"special": true
|
179 |
+
},
|
180 |
+
"32019": {
|
181 |
+
"content": "<extra_id_80>",
|
182 |
+
"lstrip": true,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": true,
|
185 |
+
"single_word": false,
|
186 |
+
"special": true
|
187 |
+
},
|
188 |
+
"32020": {
|
189 |
+
"content": "<extra_id_79>",
|
190 |
+
"lstrip": true,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": true,
|
193 |
+
"single_word": false,
|
194 |
+
"special": true
|
195 |
+
},
|
196 |
+
"32021": {
|
197 |
+
"content": "<extra_id_78>",
|
198 |
+
"lstrip": true,
|
199 |
+
"normalized": false,
|
200 |
+
"rstrip": true,
|
201 |
+
"single_word": false,
|
202 |
+
"special": true
|
203 |
+
},
|
204 |
+
"32022": {
|
205 |
+
"content": "<extra_id_77>",
|
206 |
+
"lstrip": true,
|
207 |
+
"normalized": false,
|
208 |
+
"rstrip": true,
|
209 |
+
"single_word": false,
|
210 |
+
"special": true
|
211 |
+
},
|
212 |
+
"32023": {
|
213 |
+
"content": "<extra_id_76>",
|
214 |
+
"lstrip": true,
|
215 |
+
"normalized": false,
|
216 |
+
"rstrip": true,
|
217 |
+
"single_word": false,
|
218 |
+
"special": true
|
219 |
+
},
|
220 |
+
"32024": {
|
221 |
+
"content": "<extra_id_75>",
|
222 |
+
"lstrip": true,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": true,
|
225 |
+
"single_word": false,
|
226 |
+
"special": true
|
227 |
+
},
|
228 |
+
"32025": {
|
229 |
+
"content": "<extra_id_74>",
|
230 |
+
"lstrip": true,
|
231 |
+
"normalized": false,
|
232 |
+
"rstrip": true,
|
233 |
+
"single_word": false,
|
234 |
+
"special": true
|
235 |
+
},
|
236 |
+
"32026": {
|
237 |
+
"content": "<extra_id_73>",
|
238 |
+
"lstrip": true,
|
239 |
+
"normalized": false,
|
240 |
+
"rstrip": true,
|
241 |
+
"single_word": false,
|
242 |
+
"special": true
|
243 |
+
},
|
244 |
+
"32027": {
|
245 |
+
"content": "<extra_id_72>",
|
246 |
+
"lstrip": true,
|
247 |
+
"normalized": false,
|
248 |
+
"rstrip": true,
|
249 |
+
"single_word": false,
|
250 |
+
"special": true
|
251 |
+
},
|
252 |
+
"32028": {
|
253 |
+
"content": "<extra_id_71>",
|
254 |
+
"lstrip": true,
|
255 |
+
"normalized": false,
|
256 |
+
"rstrip": true,
|
257 |
+
"single_word": false,
|
258 |
+
"special": true
|
259 |
+
},
|
260 |
+
"32029": {
|
261 |
+
"content": "<extra_id_70>",
|
262 |
+
"lstrip": true,
|
263 |
+
"normalized": false,
|
264 |
+
"rstrip": true,
|
265 |
+
"single_word": false,
|
266 |
+
"special": true
|
267 |
+
},
|
268 |
+
"32030": {
|
269 |
+
"content": "<extra_id_69>",
|
270 |
+
"lstrip": true,
|
271 |
+
"normalized": false,
|
272 |
+
"rstrip": true,
|
273 |
+
"single_word": false,
|
274 |
+
"special": true
|
275 |
+
},
|
276 |
+
"32031": {
|
277 |
+
"content": "<extra_id_68>",
|
278 |
+
"lstrip": true,
|
279 |
+
"normalized": false,
|
280 |
+
"rstrip": true,
|
281 |
+
"single_word": false,
|
282 |
+
"special": true
|
283 |
+
},
|
284 |
+
"32032": {
|
285 |
+
"content": "<extra_id_67>",
|
286 |
+
"lstrip": true,
|
287 |
+
"normalized": false,
|
288 |
+
"rstrip": true,
|
289 |
+
"single_word": false,
|
290 |
+
"special": true
|
291 |
+
},
|
292 |
+
"32033": {
|
293 |
+
"content": "<extra_id_66>",
|
294 |
+
"lstrip": true,
|
295 |
+
"normalized": false,
|
296 |
+
"rstrip": true,
|
297 |
+
"single_word": false,
|
298 |
+
"special": true
|
299 |
+
},
|
300 |
+
"32034": {
|
301 |
+
"content": "<extra_id_65>",
|
302 |
+
"lstrip": true,
|
303 |
+
"normalized": false,
|
304 |
+
"rstrip": true,
|
305 |
+
"single_word": false,
|
306 |
+
"special": true
|
307 |
+
},
|
308 |
+
"32035": {
|
309 |
+
"content": "<extra_id_64>",
|
310 |
+
"lstrip": true,
|
311 |
+
"normalized": false,
|
312 |
+
"rstrip": true,
|
313 |
+
"single_word": false,
|
314 |
+
"special": true
|
315 |
+
},
|
316 |
+
"32036": {
|
317 |
+
"content": "<extra_id_63>",
|
318 |
+
"lstrip": true,
|
319 |
+
"normalized": false,
|
320 |
+
"rstrip": true,
|
321 |
+
"single_word": false,
|
322 |
+
"special": true
|
323 |
+
},
|
324 |
+
"32037": {
|
325 |
+
"content": "<extra_id_62>",
|
326 |
+
"lstrip": true,
|
327 |
+
"normalized": false,
|
328 |
+
"rstrip": true,
|
329 |
+
"single_word": false,
|
330 |
+
"special": true
|
331 |
+
},
|
332 |
+
"32038": {
|
333 |
+
"content": "<extra_id_61>",
|
334 |
+
"lstrip": true,
|
335 |
+
"normalized": false,
|
336 |
+
"rstrip": true,
|
337 |
+
"single_word": false,
|
338 |
+
"special": true
|
339 |
+
},
|
340 |
+
"32039": {
|
341 |
+
"content": "<extra_id_60>",
|
342 |
+
"lstrip": true,
|
343 |
+
"normalized": false,
|
344 |
+
"rstrip": true,
|
345 |
+
"single_word": false,
|
346 |
+
"special": true
|
347 |
+
},
|
348 |
+
"32040": {
|
349 |
+
"content": "<extra_id_59>",
|
350 |
+
"lstrip": true,
|
351 |
+
"normalized": false,
|
352 |
+
"rstrip": true,
|
353 |
+
"single_word": false,
|
354 |
+
"special": true
|
355 |
+
},
|
356 |
+
"32041": {
|
357 |
+
"content": "<extra_id_58>",
|
358 |
+
"lstrip": true,
|
359 |
+
"normalized": false,
|
360 |
+
"rstrip": true,
|
361 |
+
"single_word": false,
|
362 |
+
"special": true
|
363 |
+
},
|
364 |
+
"32042": {
|
365 |
+
"content": "<extra_id_57>",
|
366 |
+
"lstrip": true,
|
367 |
+
"normalized": false,
|
368 |
+
"rstrip": true,
|
369 |
+
"single_word": false,
|
370 |
+
"special": true
|
371 |
+
},
|
372 |
+
"32043": {
|
373 |
+
"content": "<extra_id_56>",
|
374 |
+
"lstrip": true,
|
375 |
+
"normalized": false,
|
376 |
+
"rstrip": true,
|
377 |
+
"single_word": false,
|
378 |
+
"special": true
|
379 |
+
},
|
380 |
+
"32044": {
|
381 |
+
"content": "<extra_id_55>",
|
382 |
+
"lstrip": true,
|
383 |
+
"normalized": false,
|
384 |
+
"rstrip": true,
|
385 |
+
"single_word": false,
|
386 |
+
"special": true
|
387 |
+
},
|
388 |
+
"32045": {
|
389 |
+
"content": "<extra_id_54>",
|
390 |
+
"lstrip": true,
|
391 |
+
"normalized": false,
|
392 |
+
"rstrip": true,
|
393 |
+
"single_word": false,
|
394 |
+
"special": true
|
395 |
+
},
|
396 |
+
"32046": {
|
397 |
+
"content": "<extra_id_53>",
|
398 |
+
"lstrip": true,
|
399 |
+
"normalized": false,
|
400 |
+
"rstrip": true,
|
401 |
+
"single_word": false,
|
402 |
+
"special": true
|
403 |
+
},
|
404 |
+
"32047": {
|
405 |
+
"content": "<extra_id_52>",
|
406 |
+
"lstrip": true,
|
407 |
+
"normalized": false,
|
408 |
+
"rstrip": true,
|
409 |
+
"single_word": false,
|
410 |
+
"special": true
|
411 |
+
},
|
412 |
+
"32048": {
|
413 |
+
"content": "<extra_id_51>",
|
414 |
+
"lstrip": true,
|
415 |
+
"normalized": false,
|
416 |
+
"rstrip": true,
|
417 |
+
"single_word": false,
|
418 |
+
"special": true
|
419 |
+
},
|
420 |
+
"32049": {
|
421 |
+
"content": "<extra_id_50>",
|
422 |
+
"lstrip": true,
|
423 |
+
"normalized": false,
|
424 |
+
"rstrip": true,
|
425 |
+
"single_word": false,
|
426 |
+
"special": true
|
427 |
+
},
|
428 |
+
"32050": {
|
429 |
+
"content": "<extra_id_49>",
|
430 |
+
"lstrip": true,
|
431 |
+
"normalized": false,
|
432 |
+
"rstrip": true,
|
433 |
+
"single_word": false,
|
434 |
+
"special": true
|
435 |
+
},
|
436 |
+
"32051": {
|
437 |
+
"content": "<extra_id_48>",
|
438 |
+
"lstrip": true,
|
439 |
+
"normalized": false,
|
440 |
+
"rstrip": true,
|
441 |
+
"single_word": false,
|
442 |
+
"special": true
|
443 |
+
},
|
444 |
+
"32052": {
|
445 |
+
"content": "<extra_id_47>",
|
446 |
+
"lstrip": true,
|
447 |
+
"normalized": false,
|
448 |
+
"rstrip": true,
|
449 |
+
"single_word": false,
|
450 |
+
"special": true
|
451 |
+
},
|
452 |
+
"32053": {
|
453 |
+
"content": "<extra_id_46>",
|
454 |
+
"lstrip": true,
|
455 |
+
"normalized": false,
|
456 |
+
"rstrip": true,
|
457 |
+
"single_word": false,
|
458 |
+
"special": true
|
459 |
+
},
|
460 |
+
"32054": {
|
461 |
+
"content": "<extra_id_45>",
|
462 |
+
"lstrip": true,
|
463 |
+
"normalized": false,
|
464 |
+
"rstrip": true,
|
465 |
+
"single_word": false,
|
466 |
+
"special": true
|
467 |
+
},
|
468 |
+
"32055": {
|
469 |
+
"content": "<extra_id_44>",
|
470 |
+
"lstrip": true,
|
471 |
+
"normalized": false,
|
472 |
+
"rstrip": true,
|
473 |
+
"single_word": false,
|
474 |
+
"special": true
|
475 |
+
},
|
476 |
+
"32056": {
|
477 |
+
"content": "<extra_id_43>",
|
478 |
+
"lstrip": true,
|
479 |
+
"normalized": false,
|
480 |
+
"rstrip": true,
|
481 |
+
"single_word": false,
|
482 |
+
"special": true
|
483 |
+
},
|
484 |
+
"32057": {
|
485 |
+
"content": "<extra_id_42>",
|
486 |
+
"lstrip": true,
|
487 |
+
"normalized": false,
|
488 |
+
"rstrip": true,
|
489 |
+
"single_word": false,
|
490 |
+
"special": true
|
491 |
+
},
|
492 |
+
"32058": {
|
493 |
+
"content": "<extra_id_41>",
|
494 |
+
"lstrip": true,
|
495 |
+
"normalized": false,
|
496 |
+
"rstrip": true,
|
497 |
+
"single_word": false,
|
498 |
+
"special": true
|
499 |
+
},
|
500 |
+
"32059": {
|
501 |
+
"content": "<extra_id_40>",
|
502 |
+
"lstrip": true,
|
503 |
+
"normalized": false,
|
504 |
+
"rstrip": true,
|
505 |
+
"single_word": false,
|
506 |
+
"special": true
|
507 |
+
},
|
508 |
+
"32060": {
|
509 |
+
"content": "<extra_id_39>",
|
510 |
+
"lstrip": true,
|
511 |
+
"normalized": false,
|
512 |
+
"rstrip": true,
|
513 |
+
"single_word": false,
|
514 |
+
"special": true
|
515 |
+
},
|
516 |
+
"32061": {
|
517 |
+
"content": "<extra_id_38>",
|
518 |
+
"lstrip": true,
|
519 |
+
"normalized": false,
|
520 |
+
"rstrip": true,
|
521 |
+
"single_word": false,
|
522 |
+
"special": true
|
523 |
+
},
|
524 |
+
"32062": {
|
525 |
+
"content": "<extra_id_37>",
|
526 |
+
"lstrip": true,
|
527 |
+
"normalized": false,
|
528 |
+
"rstrip": true,
|
529 |
+
"single_word": false,
|
530 |
+
"special": true
|
531 |
+
},
|
532 |
+
"32063": {
|
533 |
+
"content": "<extra_id_36>",
|
534 |
+
"lstrip": true,
|
535 |
+
"normalized": false,
|
536 |
+
"rstrip": true,
|
537 |
+
"single_word": false,
|
538 |
+
"special": true
|
539 |
+
},
|
540 |
+
"32064": {
|
541 |
+
"content": "<extra_id_35>",
|
542 |
+
"lstrip": true,
|
543 |
+
"normalized": false,
|
544 |
+
"rstrip": true,
|
545 |
+
"single_word": false,
|
546 |
+
"special": true
|
547 |
+
},
|
548 |
+
"32065": {
|
549 |
+
"content": "<extra_id_34>",
|
550 |
+
"lstrip": true,
|
551 |
+
"normalized": false,
|
552 |
+
"rstrip": true,
|
553 |
+
"single_word": false,
|
554 |
+
"special": true
|
555 |
+
},
|
556 |
+
"32066": {
|
557 |
+
"content": "<extra_id_33>",
|
558 |
+
"lstrip": true,
|
559 |
+
"normalized": false,
|
560 |
+
"rstrip": true,
|
561 |
+
"single_word": false,
|
562 |
+
"special": true
|
563 |
+
},
|
564 |
+
"32067": {
|
565 |
+
"content": "<extra_id_32>",
|
566 |
+
"lstrip": true,
|
567 |
+
"normalized": false,
|
568 |
+
"rstrip": true,
|
569 |
+
"single_word": false,
|
570 |
+
"special": true
|
571 |
+
},
|
572 |
+
"32068": {
|
573 |
+
"content": "<extra_id_31>",
|
574 |
+
"lstrip": true,
|
575 |
+
"normalized": false,
|
576 |
+
"rstrip": true,
|
577 |
+
"single_word": false,
|
578 |
+
"special": true
|
579 |
+
},
|
580 |
+
"32069": {
|
581 |
+
"content": "<extra_id_30>",
|
582 |
+
"lstrip": true,
|
583 |
+
"normalized": false,
|
584 |
+
"rstrip": true,
|
585 |
+
"single_word": false,
|
586 |
+
"special": true
|
587 |
+
},
|
588 |
+
"32070": {
|
589 |
+
"content": "<extra_id_29>",
|
590 |
+
"lstrip": true,
|
591 |
+
"normalized": false,
|
592 |
+
"rstrip": true,
|
593 |
+
"single_word": false,
|
594 |
+
"special": true
|
595 |
+
},
|
596 |
+
"32071": {
|
597 |
+
"content": "<extra_id_28>",
|
598 |
+
"lstrip": true,
|
599 |
+
"normalized": false,
|
600 |
+
"rstrip": true,
|
601 |
+
"single_word": false,
|
602 |
+
"special": true
|
603 |
+
},
|
604 |
+
"32072": {
|
605 |
+
"content": "<extra_id_27>",
|
606 |
+
"lstrip": true,
|
607 |
+
"normalized": false,
|
608 |
+
"rstrip": true,
|
609 |
+
"single_word": false,
|
610 |
+
"special": true
|
611 |
+
},
|
612 |
+
"32073": {
|
613 |
+
"content": "<extra_id_26>",
|
614 |
+
"lstrip": true,
|
615 |
+
"normalized": false,
|
616 |
+
"rstrip": true,
|
617 |
+
"single_word": false,
|
618 |
+
"special": true
|
619 |
+
},
|
620 |
+
"32074": {
|
621 |
+
"content": "<extra_id_25>",
|
622 |
+
"lstrip": true,
|
623 |
+
"normalized": false,
|
624 |
+
"rstrip": true,
|
625 |
+
"single_word": false,
|
626 |
+
"special": true
|
627 |
+
},
|
628 |
+
"32075": {
|
629 |
+
"content": "<extra_id_24>",
|
630 |
+
"lstrip": true,
|
631 |
+
"normalized": false,
|
632 |
+
"rstrip": true,
|
633 |
+
"single_word": false,
|
634 |
+
"special": true
|
635 |
+
},
|
636 |
+
"32076": {
|
637 |
+
"content": "<extra_id_23>",
|
638 |
+
"lstrip": true,
|
639 |
+
"normalized": false,
|
640 |
+
"rstrip": true,
|
641 |
+
"single_word": false,
|
642 |
+
"special": true
|
643 |
+
},
|
644 |
+
"32077": {
|
645 |
+
"content": "<extra_id_22>",
|
646 |
+
"lstrip": true,
|
647 |
+
"normalized": false,
|
648 |
+
"rstrip": true,
|
649 |
+
"single_word": false,
|
650 |
+
"special": true
|
651 |
+
},
|
652 |
+
"32078": {
|
653 |
+
"content": "<extra_id_21>",
|
654 |
+
"lstrip": true,
|
655 |
+
"normalized": false,
|
656 |
+
"rstrip": true,
|
657 |
+
"single_word": false,
|
658 |
+
"special": true
|
659 |
+
},
|
660 |
+
"32079": {
|
661 |
+
"content": "<extra_id_20>",
|
662 |
+
"lstrip": true,
|
663 |
+
"normalized": false,
|
664 |
+
"rstrip": true,
|
665 |
+
"single_word": false,
|
666 |
+
"special": true
|
667 |
+
},
|
668 |
+
"32080": {
|
669 |
+
"content": "<extra_id_19>",
|
670 |
+
"lstrip": true,
|
671 |
+
"normalized": false,
|
672 |
+
"rstrip": true,
|
673 |
+
"single_word": false,
|
674 |
+
"special": true
|
675 |
+
},
|
676 |
+
"32081": {
|
677 |
+
"content": "<extra_id_18>",
|
678 |
+
"lstrip": true,
|
679 |
+
"normalized": false,
|
680 |
+
"rstrip": true,
|
681 |
+
"single_word": false,
|
682 |
+
"special": true
|
683 |
+
},
|
684 |
+
"32082": {
|
685 |
+
"content": "<extra_id_17>",
|
686 |
+
"lstrip": true,
|
687 |
+
"normalized": false,
|
688 |
+
"rstrip": true,
|
689 |
+
"single_word": false,
|
690 |
+
"special": true
|
691 |
+
},
|
692 |
+
"32083": {
|
693 |
+
"content": "<extra_id_16>",
|
694 |
+
"lstrip": true,
|
695 |
+
"normalized": false,
|
696 |
+
"rstrip": true,
|
697 |
+
"single_word": false,
|
698 |
+
"special": true
|
699 |
+
},
|
700 |
+
"32084": {
|
701 |
+
"content": "<extra_id_15>",
|
702 |
+
"lstrip": true,
|
703 |
+
"normalized": false,
|
704 |
+
"rstrip": true,
|
705 |
+
"single_word": false,
|
706 |
+
"special": true
|
707 |
+
},
|
708 |
+
"32085": {
|
709 |
+
"content": "<extra_id_14>",
|
710 |
+
"lstrip": true,
|
711 |
+
"normalized": false,
|
712 |
+
"rstrip": true,
|
713 |
+
"single_word": false,
|
714 |
+
"special": true
|
715 |
+
},
|
716 |
+
"32086": {
|
717 |
+
"content": "<extra_id_13>",
|
718 |
+
"lstrip": true,
|
719 |
+
"normalized": false,
|
720 |
+
"rstrip": true,
|
721 |
+
"single_word": false,
|
722 |
+
"special": true
|
723 |
+
},
|
724 |
+
"32087": {
|
725 |
+
"content": "<extra_id_12>",
|
726 |
+
"lstrip": true,
|
727 |
+
"normalized": false,
|
728 |
+
"rstrip": true,
|
729 |
+
"single_word": false,
|
730 |
+
"special": true
|
731 |
+
},
|
732 |
+
"32088": {
|
733 |
+
"content": "<extra_id_11>",
|
734 |
+
"lstrip": true,
|
735 |
+
"normalized": false,
|
736 |
+
"rstrip": true,
|
737 |
+
"single_word": false,
|
738 |
+
"special": true
|
739 |
+
},
|
740 |
+
"32089": {
|
741 |
+
"content": "<extra_id_10>",
|
742 |
+
"lstrip": true,
|
743 |
+
"normalized": false,
|
744 |
+
"rstrip": true,
|
745 |
+
"single_word": false,
|
746 |
+
"special": true
|
747 |
+
},
|
748 |
+
"32090": {
|
749 |
+
"content": "<extra_id_9>",
|
750 |
+
"lstrip": true,
|
751 |
+
"normalized": false,
|
752 |
+
"rstrip": true,
|
753 |
+
"single_word": false,
|
754 |
+
"special": true
|
755 |
+
},
|
756 |
+
"32091": {
|
757 |
+
"content": "<extra_id_8>",
|
758 |
+
"lstrip": true,
|
759 |
+
"normalized": false,
|
760 |
+
"rstrip": true,
|
761 |
+
"single_word": false,
|
762 |
+
"special": true
|
763 |
+
},
|
764 |
+
"32092": {
|
765 |
+
"content": "<extra_id_7>",
|
766 |
+
"lstrip": true,
|
767 |
+
"normalized": false,
|
768 |
+
"rstrip": true,
|
769 |
+
"single_word": false,
|
770 |
+
"special": true
|
771 |
+
},
|
772 |
+
"32093": {
|
773 |
+
"content": "<extra_id_6>",
|
774 |
+
"lstrip": true,
|
775 |
+
"normalized": false,
|
776 |
+
"rstrip": true,
|
777 |
+
"single_word": false,
|
778 |
+
"special": true
|
779 |
+
},
|
780 |
+
"32094": {
|
781 |
+
"content": "<extra_id_5>",
|
782 |
+
"lstrip": true,
|
783 |
+
"normalized": false,
|
784 |
+
"rstrip": true,
|
785 |
+
"single_word": false,
|
786 |
+
"special": true
|
787 |
+
},
|
788 |
+
"32095": {
|
789 |
+
"content": "<extra_id_4>",
|
790 |
+
"lstrip": true,
|
791 |
+
"normalized": false,
|
792 |
+
"rstrip": true,
|
793 |
+
"single_word": false,
|
794 |
+
"special": true
|
795 |
+
},
|
796 |
+
"32096": {
|
797 |
+
"content": "<extra_id_3>",
|
798 |
+
"lstrip": true,
|
799 |
+
"normalized": false,
|
800 |
+
"rstrip": true,
|
801 |
+
"single_word": false,
|
802 |
+
"special": true
|
803 |
+
},
|
804 |
+
"32097": {
|
805 |
+
"content": "<extra_id_2>",
|
806 |
+
"lstrip": true,
|
807 |
+
"normalized": false,
|
808 |
+
"rstrip": true,
|
809 |
+
"single_word": false,
|
810 |
+
"special": true
|
811 |
+
},
|
812 |
+
"32098": {
|
813 |
+
"content": "<extra_id_1>",
|
814 |
+
"lstrip": true,
|
815 |
+
"normalized": false,
|
816 |
+
"rstrip": true,
|
817 |
+
"single_word": false,
|
818 |
+
"special": true
|
819 |
+
},
|
820 |
+
"32099": {
|
821 |
+
"content": "<extra_id_0>",
|
822 |
+
"lstrip": true,
|
823 |
+
"normalized": false,
|
824 |
+
"rstrip": true,
|
825 |
+
"single_word": false,
|
826 |
+
"special": true
|
827 |
+
},
|
828 |
+
"32100": {
|
829 |
+
"content": "<s>",
|
830 |
+
"lstrip": false,
|
831 |
+
"normalized": false,
|
832 |
+
"rstrip": false,
|
833 |
+
"single_word": false,
|
834 |
+
"special": true
|
835 |
+
},
|
836 |
+
"32101": {
|
837 |
+
"content": "<extra_token_0>",
|
838 |
+
"lstrip": false,
|
839 |
+
"normalized": true,
|
840 |
+
"rstrip": false,
|
841 |
+
"single_word": false,
|
842 |
+
"special": false
|
843 |
+
},
|
844 |
+
"32102": {
|
845 |
+
"content": "<extra_token_1>",
|
846 |
+
"lstrip": false,
|
847 |
+
"normalized": true,
|
848 |
+
"rstrip": false,
|
849 |
+
"single_word": false,
|
850 |
+
"special": false
|
851 |
+
},
|
852 |
+
"32103": {
|
853 |
+
"content": "<extra_token_2>",
|
854 |
+
"lstrip": false,
|
855 |
+
"normalized": true,
|
856 |
+
"rstrip": false,
|
857 |
+
"single_word": false,
|
858 |
+
"special": false
|
859 |
+
},
|
860 |
+
"32104": {
|
861 |
+
"content": "<extra_token_3>",
|
862 |
+
"lstrip": false,
|
863 |
+
"normalized": true,
|
864 |
+
"rstrip": false,
|
865 |
+
"single_word": false,
|
866 |
+
"special": false
|
867 |
+
},
|
868 |
+
"32105": {
|
869 |
+
"content": "<extra_token_4>",
|
870 |
+
"lstrip": false,
|
871 |
+
"normalized": true,
|
872 |
+
"rstrip": false,
|
873 |
+
"single_word": false,
|
874 |
+
"special": false
|
875 |
+
},
|
876 |
+
"32106": {
|
877 |
+
"content": "<extra_token_5>",
|
878 |
+
"lstrip": false,
|
879 |
+
"normalized": true,
|
880 |
+
"rstrip": false,
|
881 |
+
"single_word": false,
|
882 |
+
"special": false
|
883 |
+
},
|
884 |
+
"32107": {
|
885 |
+
"content": "<extra_token_6>",
|
886 |
+
"lstrip": false,
|
887 |
+
"normalized": true,
|
888 |
+
"rstrip": false,
|
889 |
+
"single_word": false,
|
890 |
+
"special": false
|
891 |
+
},
|
892 |
+
"32108": {
|
893 |
+
"content": "<extra_token_7>",
|
894 |
+
"lstrip": false,
|
895 |
+
"normalized": true,
|
896 |
+
"rstrip": false,
|
897 |
+
"single_word": false,
|
898 |
+
"special": false
|
899 |
+
},
|
900 |
+
"32109": {
|
901 |
+
"content": "<extra_token_8>",
|
902 |
+
"lstrip": false,
|
903 |
+
"normalized": true,
|
904 |
+
"rstrip": false,
|
905 |
+
"single_word": false,
|
906 |
+
"special": false
|
907 |
+
},
|
908 |
+
"32110": {
|
909 |
+
"content": "<extra_token_9>",
|
910 |
+
"lstrip": false,
|
911 |
+
"normalized": true,
|
912 |
+
"rstrip": false,
|
913 |
+
"single_word": false,
|
914 |
+
"special": false
|
915 |
+
},
|
916 |
+
"32111": {
|
917 |
+
"content": "<extra_token_10>",
|
918 |
+
"lstrip": false,
|
919 |
+
"normalized": true,
|
920 |
+
"rstrip": false,
|
921 |
+
"single_word": false,
|
922 |
+
"special": false
|
923 |
+
},
|
924 |
+
"32112": {
|
925 |
+
"content": "<extra_token_11>",
|
926 |
+
"lstrip": false,
|
927 |
+
"normalized": true,
|
928 |
+
"rstrip": false,
|
929 |
+
"single_word": false,
|
930 |
+
"special": false
|
931 |
+
},
|
932 |
+
"32113": {
|
933 |
+
"content": "<extra_token_12>",
|
934 |
+
"lstrip": false,
|
935 |
+
"normalized": true,
|
936 |
+
"rstrip": false,
|
937 |
+
"single_word": false,
|
938 |
+
"special": false
|
939 |
+
},
|
940 |
+
"32114": {
|
941 |
+
"content": "<extra_token_13>",
|
942 |
+
"lstrip": false,
|
943 |
+
"normalized": true,
|
944 |
+
"rstrip": false,
|
945 |
+
"single_word": false,
|
946 |
+
"special": false
|
947 |
+
},
|
948 |
+
"32115": {
|
949 |
+
"content": "<extra_token_14>",
|
950 |
+
"lstrip": false,
|
951 |
+
"normalized": true,
|
952 |
+
"rstrip": false,
|
953 |
+
"single_word": false,
|
954 |
+
"special": false
|
955 |
+
},
|
956 |
+
"32116": {
|
957 |
+
"content": "<extra_token_15>",
|
958 |
+
"lstrip": false,
|
959 |
+
"normalized": true,
|
960 |
+
"rstrip": false,
|
961 |
+
"single_word": false,
|
962 |
+
"special": false
|
963 |
+
},
|
964 |
+
"32117": {
|
965 |
+
"content": "<extra_token_16>",
|
966 |
+
"lstrip": false,
|
967 |
+
"normalized": true,
|
968 |
+
"rstrip": false,
|
969 |
+
"single_word": false,
|
970 |
+
"special": false
|
971 |
+
},
|
972 |
+
"32118": {
|
973 |
+
"content": "<extra_token_17>",
|
974 |
+
"lstrip": false,
|
975 |
+
"normalized": true,
|
976 |
+
"rstrip": false,
|
977 |
+
"single_word": false,
|
978 |
+
"special": false
|
979 |
+
},
|
980 |
+
"32119": {
|
981 |
+
"content": "<extra_token_18>",
|
982 |
+
"lstrip": false,
|
983 |
+
"normalized": true,
|
984 |
+
"rstrip": false,
|
985 |
+
"single_word": false,
|
986 |
+
"special": false
|
987 |
+
},
|
988 |
+
"32120": {
|
989 |
+
"content": "<extra_token_19>",
|
990 |
+
"lstrip": false,
|
991 |
+
"normalized": true,
|
992 |
+
"rstrip": false,
|
993 |
+
"single_word": false,
|
994 |
+
"special": false
|
995 |
+
},
|
996 |
+
"32121": {
|
997 |
+
"content": "<extra_token_20>",
|
998 |
+
"lstrip": false,
|
999 |
+
"normalized": true,
|
1000 |
+
"rstrip": false,
|
1001 |
+
"single_word": false,
|
1002 |
+
"special": false
|
1003 |
+
},
|
1004 |
+
"32122": {
|
1005 |
+
"content": "<extra_token_21>",
|
1006 |
+
"lstrip": false,
|
1007 |
+
"normalized": true,
|
1008 |
+
"rstrip": false,
|
1009 |
+
"single_word": false,
|
1010 |
+
"special": false
|
1011 |
+
},
|
1012 |
+
"32123": {
|
1013 |
+
"content": "<extra_token_22>",
|
1014 |
+
"lstrip": false,
|
1015 |
+
"normalized": true,
|
1016 |
+
"rstrip": false,
|
1017 |
+
"single_word": false,
|
1018 |
+
"special": false
|
1019 |
+
},
|
1020 |
+
"32124": {
|
1021 |
+
"content": "<extra_token_23>",
|
1022 |
+
"lstrip": false,
|
1023 |
+
"normalized": true,
|
1024 |
+
"rstrip": false,
|
1025 |
+
"single_word": false,
|
1026 |
+
"special": false
|
1027 |
+
},
|
1028 |
+
"32125": {
|
1029 |
+
"content": "<extra_token_24>",
|
1030 |
+
"lstrip": false,
|
1031 |
+
"normalized": true,
|
1032 |
+
"rstrip": false,
|
1033 |
+
"single_word": false,
|
1034 |
+
"special": false
|
1035 |
+
},
|
1036 |
+
"32126": {
|
1037 |
+
"content": "<extra_token_25>",
|
1038 |
+
"lstrip": false,
|
1039 |
+
"normalized": true,
|
1040 |
+
"rstrip": false,
|
1041 |
+
"single_word": false,
|
1042 |
+
"special": false
|
1043 |
+
},
|
1044 |
+
"32127": {
|
1045 |
+
"content": "<extra_token_26>",
|
1046 |
+
"lstrip": false,
|
1047 |
+
"normalized": true,
|
1048 |
+
"rstrip": false,
|
1049 |
+
"single_word": false,
|
1050 |
+
"special": false
|
1051 |
+
}
|
1052 |
+
},
|
1053 |
+
"additional_special_tokens": [
|
1054 |
+
"<s>",
|
1055 |
+
"</s>",
|
1056 |
+
"<pad>",
|
1057 |
+
"<extra_id_0>",
|
1058 |
+
"<extra_id_1>",
|
1059 |
+
"<extra_id_2>",
|
1060 |
+
"<extra_id_3>",
|
1061 |
+
"<extra_id_4>",
|
1062 |
+
"<extra_id_5>",
|
1063 |
+
"<extra_id_6>",
|
1064 |
+
"<extra_id_7>",
|
1065 |
+
"<extra_id_8>",
|
1066 |
+
"<extra_id_9>",
|
1067 |
+
"<extra_id_10>",
|
1068 |
+
"<extra_id_11>",
|
1069 |
+
"<extra_id_12>",
|
1070 |
+
"<extra_id_13>",
|
1071 |
+
"<extra_id_14>",
|
1072 |
+
"<extra_id_15>",
|
1073 |
+
"<extra_id_16>",
|
1074 |
+
"<extra_id_17>",
|
1075 |
+
"<extra_id_18>",
|
1076 |
+
"<extra_id_19>",
|
1077 |
+
"<extra_id_20>",
|
1078 |
+
"<extra_id_21>",
|
1079 |
+
"<extra_id_22>",
|
1080 |
+
"<extra_id_23>",
|
1081 |
+
"<extra_id_24>",
|
1082 |
+
"<extra_id_25>",
|
1083 |
+
"<extra_id_26>",
|
1084 |
+
"<extra_id_27>",
|
1085 |
+
"<extra_id_28>",
|
1086 |
+
"<extra_id_29>",
|
1087 |
+
"<extra_id_30>",
|
1088 |
+
"<extra_id_31>",
|
1089 |
+
"<extra_id_32>",
|
1090 |
+
"<extra_id_33>",
|
1091 |
+
"<extra_id_34>",
|
1092 |
+
"<extra_id_35>",
|
1093 |
+
"<extra_id_36>",
|
1094 |
+
"<extra_id_37>",
|
1095 |
+
"<extra_id_38>",
|
1096 |
+
"<extra_id_39>",
|
1097 |
+
"<extra_id_40>",
|
1098 |
+
"<extra_id_41>",
|
1099 |
+
"<extra_id_42>",
|
1100 |
+
"<extra_id_43>",
|
1101 |
+
"<extra_id_44>",
|
1102 |
+
"<extra_id_45>",
|
1103 |
+
"<extra_id_46>",
|
1104 |
+
"<extra_id_47>",
|
1105 |
+
"<extra_id_48>",
|
1106 |
+
"<extra_id_49>",
|
1107 |
+
"<extra_id_50>",
|
1108 |
+
"<extra_id_51>",
|
1109 |
+
"<extra_id_52>",
|
1110 |
+
"<extra_id_53>",
|
1111 |
+
"<extra_id_54>",
|
1112 |
+
"<extra_id_55>",
|
1113 |
+
"<extra_id_56>",
|
1114 |
+
"<extra_id_57>",
|
1115 |
+
"<extra_id_58>",
|
1116 |
+
"<extra_id_59>",
|
1117 |
+
"<extra_id_60>",
|
1118 |
+
"<extra_id_61>",
|
1119 |
+
"<extra_id_62>",
|
1120 |
+
"<extra_id_63>",
|
1121 |
+
"<extra_id_64>",
|
1122 |
+
"<extra_id_65>",
|
1123 |
+
"<extra_id_66>",
|
1124 |
+
"<extra_id_67>",
|
1125 |
+
"<extra_id_68>",
|
1126 |
+
"<extra_id_69>",
|
1127 |
+
"<extra_id_70>",
|
1128 |
+
"<extra_id_71>",
|
1129 |
+
"<extra_id_72>",
|
1130 |
+
"<extra_id_73>",
|
1131 |
+
"<extra_id_74>",
|
1132 |
+
"<extra_id_75>",
|
1133 |
+
"<extra_id_76>",
|
1134 |
+
"<extra_id_77>",
|
1135 |
+
"<extra_id_78>",
|
1136 |
+
"<extra_id_79>",
|
1137 |
+
"<extra_id_80>",
|
1138 |
+
"<extra_id_81>",
|
1139 |
+
"<extra_id_82>",
|
1140 |
+
"<extra_id_83>",
|
1141 |
+
"<extra_id_84>",
|
1142 |
+
"<extra_id_85>",
|
1143 |
+
"<extra_id_86>",
|
1144 |
+
"<extra_id_87>",
|
1145 |
+
"<extra_id_88>",
|
1146 |
+
"<extra_id_89>",
|
1147 |
+
"<extra_id_90>",
|
1148 |
+
"<extra_id_91>",
|
1149 |
+
"<extra_id_92>",
|
1150 |
+
"<extra_id_93>",
|
1151 |
+
"<extra_id_94>",
|
1152 |
+
"<extra_id_95>",
|
1153 |
+
"<extra_id_96>",
|
1154 |
+
"<extra_id_97>",
|
1155 |
+
"<extra_id_98>",
|
1156 |
+
"<extra_id_99>"
|
1157 |
+
],
|
1158 |
+
"bos_token": "</s>",
|
1159 |
+
"clean_up_tokenization_spaces": false,
|
1160 |
+
"eos_token": "</s>",
|
1161 |
+
"extra_ids": 100,
|
1162 |
+
"extra_special_tokens": {},
|
1163 |
+
"legacy": false,
|
1164 |
+
"model_max_length": 512,
|
1165 |
+
"pad_token": "<pad>",
|
1166 |
+
"sp_model_kwargs": {},
|
1167 |
+
"tokenizer_class": "T5Tokenizer",
|
1168 |
+
"unk_token": "<unk>"
|
1169 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
torch --index-url https://download.pytorch.org/whl/cpu # For CPU-only build
|
3 |
+
transformers
|
4 |
+
numpy
|
5 |
+
protobuf
|
6 |
+
sentencepiece
|
7 |
+
gunicorn
|
static/style.css
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
:root {
|
2 |
+
--primary-color: #2962ff;
|
3 |
+
--secondary-color: #f8fafe;
|
4 |
+
--text-color: #1a1f36;
|
5 |
+
--border-color: #e1e6ef;
|
6 |
+
--hover-color: #edf2ff;
|
7 |
+
--shadow-color: rgba(0, 0, 0, 0.06);
|
8 |
+
}
|
9 |
+
|
10 |
+
* {
|
11 |
+
margin: 0;
|
12 |
+
padding: 0;
|
13 |
+
box-sizing: border-box;
|
14 |
+
}
|
15 |
+
|
16 |
+
body {
|
17 |
+
font-family: 'Google Sans', 'Roboto', sans-serif;
|
18 |
+
background: #fff;
|
19 |
+
color: var(--text-color);
|
20 |
+
min-height: 100vh;
|
21 |
+
}
|
22 |
+
|
23 |
+
.page-container {
|
24 |
+
min-height: 100vh;
|
25 |
+
max-width: 1200px;
|
26 |
+
margin: 0 auto;
|
27 |
+
padding: 40px 20px;
|
28 |
+
display: flex;
|
29 |
+
flex-direction: column;
|
30 |
+
align-items: center;
|
31 |
+
}
|
32 |
+
|
33 |
+
.container {
|
34 |
+
max-width: 800px;
|
35 |
+
width: 100%;
|
36 |
+
background: white;
|
37 |
+
border-radius: 20px;
|
38 |
+
padding: 30px;
|
39 |
+
box-shadow: 0 10px 30px var(--shadow-color);
|
40 |
+
}
|
41 |
+
|
42 |
+
header {
|
43 |
+
text-align: center;
|
44 |
+
margin-bottom: 20px;
|
45 |
+
}
|
46 |
+
|
47 |
+
h1 {
|
48 |
+
font-size: 2.5em;
|
49 |
+
font-weight: 600;
|
50 |
+
background: linear-gradient(135deg, var(--primary-color), #1e88e5);
|
51 |
+
-webkit-background-clip: text;
|
52 |
+
background-clip: text;
|
53 |
+
-webkit-text-fill-color: transparent;
|
54 |
+
margin-bottom: 10px;
|
55 |
+
}
|
56 |
+
|
57 |
+
.subtitle {
|
58 |
+
color: #666;
|
59 |
+
font-size: 1.1em;
|
60 |
+
}
|
61 |
+
|
62 |
+
.translation-box {
|
63 |
+
background: white;
|
64 |
+
border-radius: 16px;
|
65 |
+
box-shadow: 0 8px 30px var(--shadow-color);
|
66 |
+
width: 100%;
|
67 |
+
max-width: 900px;
|
68 |
+
margin-top: 30px;
|
69 |
+
overflow: hidden;
|
70 |
+
border: 1px solid var(--border-color);
|
71 |
+
}
|
72 |
+
|
73 |
+
.input-section, .output-section {
|
74 |
+
padding: 30px;
|
75 |
+
}
|
76 |
+
|
77 |
+
.input-section {
|
78 |
+
background: var(--secondary-color);
|
79 |
+
border-bottom: 1px solid var(--border-color);
|
80 |
+
}
|
81 |
+
|
82 |
+
.input-header, .output-header {
|
83 |
+
margin-bottom: 15px;
|
84 |
+
}
|
85 |
+
|
86 |
+
label {
|
87 |
+
font-weight: 500;
|
88 |
+
color: var(--text-color);
|
89 |
+
display: flex;
|
90 |
+
align-items: center;
|
91 |
+
gap: 8px;
|
92 |
+
}
|
93 |
+
|
94 |
+
.char-count {
|
95 |
+
color: #5f6368;
|
96 |
+
font-size: 0.8em;
|
97 |
+
}
|
98 |
+
|
99 |
+
textarea {
|
100 |
+
width: 100%;
|
101 |
+
min-height: 160px;
|
102 |
+
padding: 15px;
|
103 |
+
border: 1px solid var(--border-color);
|
104 |
+
border-radius: 12px;
|
105 |
+
background: white;
|
106 |
+
font-size: 1.1em;
|
107 |
+
line-height: 1.5;
|
108 |
+
transition: border-color 0.3s ease;
|
109 |
+
}
|
110 |
+
|
111 |
+
textarea:focus {
|
112 |
+
outline: none;
|
113 |
+
border-color: var(--primary-color);
|
114 |
+
box-shadow: 0 0 0 3px rgba(41, 98, 255, 0.1);
|
115 |
+
}
|
116 |
+
|
117 |
+
.controls {
|
118 |
+
padding: 15px 30px;
|
119 |
+
background: white;
|
120 |
+
border-top: 1px solid var(--border-color);
|
121 |
+
display: flex;
|
122 |
+
justify-content: space-between;
|
123 |
+
align-items: center;
|
124 |
+
}
|
125 |
+
|
126 |
+
.primary-btn, .secondary-btn, .icon-btn {
|
127 |
+
padding: 12px 25px;
|
128 |
+
border: none;
|
129 |
+
border-radius: 8px;
|
130 |
+
cursor: pointer;
|
131 |
+
font-size: 1em;
|
132 |
+
font-weight: 500;
|
133 |
+
display: flex;
|
134 |
+
align-items: center;
|
135 |
+
gap: 8px;
|
136 |
+
transition: all 0.3s ease;
|
137 |
+
}
|
138 |
+
|
139 |
+
.primary-btn {
|
140 |
+
background: var(--primary-color);
|
141 |
+
color: white;
|
142 |
+
padding: 12px 32px;
|
143 |
+
border-radius: 8px;
|
144 |
+
font-size: 1rem;
|
145 |
+
font-weight: 500;
|
146 |
+
letter-spacing: 0.3px;
|
147 |
+
transition: transform 0.2s ease, background 0.2s ease;
|
148 |
+
}
|
149 |
+
|
150 |
+
.primary-btn:hover {
|
151 |
+
background: #1e4bd8;
|
152 |
+
transform: translateY(-1px);
|
153 |
+
}
|
154 |
+
|
155 |
+
.secondary-btn {
|
156 |
+
background: #e0e0e0;
|
157 |
+
color: #666;
|
158 |
+
}
|
159 |
+
|
160 |
+
.secondary-btn:hover {
|
161 |
+
background: #d0d0d0;
|
162 |
+
}
|
163 |
+
|
164 |
+
.icon-btn {
|
165 |
+
width: 40px;
|
166 |
+
height: 40px;
|
167 |
+
display: flex;
|
168 |
+
align-items: center;
|
169 |
+
justify-content: center;
|
170 |
+
border-radius: 10px;
|
171 |
+
transition: all 0.2s ease;
|
172 |
+
}
|
173 |
+
|
174 |
+
.icon-btn:hover {
|
175 |
+
background: var(--hover-color);
|
176 |
+
transform: scale(1.05);
|
177 |
+
}
|
178 |
+
|
179 |
+
.translation-result {
|
180 |
+
min-height: 120px;
|
181 |
+
background: white;
|
182 |
+
border-radius: 12px;
|
183 |
+
padding: 20px;
|
184 |
+
font-size: 1.1em;
|
185 |
+
line-height: 1.6;
|
186 |
+
}
|
187 |
+
|
188 |
+
/* Loading Spinner */
|
189 |
+
.loading-spinner {
|
190 |
+
display: flex;
|
191 |
+
justify-content: center;
|
192 |
+
padding: 30px;
|
193 |
+
}
|
194 |
+
|
195 |
+
.spinner {
|
196 |
+
width: 30px;
|
197 |
+
height: 30px;
|
198 |
+
border: 3px solid var(--secondary-color);
|
199 |
+
border-top: 3px solid var(--primary-color);
|
200 |
+
border-radius: 50%;
|
201 |
+
animation: spin 1s linear infinite;
|
202 |
+
}
|
203 |
+
|
204 |
+
/* Toast Notification */
|
205 |
+
.toast {
|
206 |
+
position: fixed;
|
207 |
+
bottom: 24px;
|
208 |
+
left: 50%;
|
209 |
+
transform: translateX(-50%);
|
210 |
+
background: #323232;
|
211 |
+
color: white;
|
212 |
+
padding: 12px 30px;
|
213 |
+
border-radius: 8px;
|
214 |
+
font-size: 0.95rem;
|
215 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
|
216 |
+
animation: slideUp 0.3s ease;
|
217 |
+
}
|
218 |
+
|
219 |
+
/* Animations */
|
220 |
+
@keyframes spin {
|
221 |
+
0% { transform: rotate(0deg); }
|
222 |
+
100% { transform: rotate(360deg); }
|
223 |
+
}
|
224 |
+
|
225 |
+
@keyframes fadeIn {
|
226 |
+
from { opacity: 0; transform: translate(-50%, 20px); }
|
227 |
+
to { opacity: 1; transform: translate(-50%, 0); }
|
228 |
+
}
|
229 |
+
|
230 |
+
@keyframes fadeOut {
|
231 |
+
from { opacity: 1; transform: translate(-50%, 0); }
|
232 |
+
to { opacity: 0; transform: translate(-50%, 20px); }
|
233 |
+
}
|
234 |
+
|
235 |
+
@keyframes slideUp {
|
236 |
+
from { transform: translate(-50%, 100%); opacity: 0; }
|
237 |
+
to { transform: translate(-50%, 0); opacity: 1; }
|
238 |
+
}
|
239 |
+
|
240 |
+
/* Responsive Design */
|
241 |
+
@media (max-width: 768px) {
|
242 |
+
.page-container {
|
243 |
+
padding: 20px 15px;
|
244 |
+
}
|
245 |
+
|
246 |
+
.translation-box {
|
247 |
+
border-radius: 12px;
|
248 |
+
border-left: none;
|
249 |
+
border-right: none;
|
250 |
+
}
|
251 |
+
|
252 |
+
.container {
|
253 |
+
padding: 20px;
|
254 |
+
margin: 10px;
|
255 |
+
}
|
256 |
+
|
257 |
+
h1 {
|
258 |
+
font-size: 2em;
|
259 |
+
}
|
260 |
+
|
261 |
+
.input-section, .output-section {
|
262 |
+
padding: 20px;
|
263 |
+
}
|
264 |
+
|
265 |
+
.controls {
|
266 |
+
flex-direction: column;
|
267 |
+
padding: 15px 20px;
|
268 |
+
}
|
269 |
+
|
270 |
+
.primary-btn, .secondary-btn {
|
271 |
+
width: 100%;
|
272 |
+
justify-content: center;
|
273 |
+
}
|
274 |
+
}
|
templates/index.html
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8" />
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>BanglaFeel Translator</title>
|
7 |
+
<link rel="stylesheet" href="/static/style.css" />
|
8 |
+
<link href="https://fonts.googleapis.com/css2?family=Google+Sans:wght@400;500&family=Roboto:wght@400;500&display=swap" rel="stylesheet">
|
9 |
+
<link rel="stylesheet" href="https://fonts.googleapis.com/icon?family=Material+Icons">
|
10 |
+
</head>
|
11 |
+
<body>
|
12 |
+
<div class="page-container">
|
13 |
+
<header>
|
14 |
+
<h1>BanglaFeel Translator</h1>
|
15 |
+
<p class="subtitle">Translate English to Bengali with ease</p>
|
16 |
+
</header>
|
17 |
+
|
18 |
+
<div class="translation-box">
|
19 |
+
<div class="input-section">
|
20 |
+
<div class="input-header">
|
21 |
+
<label>
|
22 |
+
<span class="material-icons">language</span>
|
23 |
+
English
|
24 |
+
</label>
|
25 |
+
</div>
|
26 |
+
<textarea id="userInput" placeholder="Type or paste your text here..." maxlength="500"></textarea>
|
27 |
+
</div>
|
28 |
+
|
29 |
+
<div class="controls">
|
30 |
+
<div class="left-controls">
|
31 |
+
<button id="clearBtn" class="icon-btn" title="Clear text">
|
32 |
+
<span class="material-icons">clear</span>
|
33 |
+
</button>
|
34 |
+
</div>
|
35 |
+
<div class="right-controls">
|
36 |
+
<span class="char-count">0/500</span>
|
37 |
+
<button id="translateBtn" class="primary-btn">
|
38 |
+
<span class="material-icons">translate</span>
|
39 |
+
Translate
|
40 |
+
</button>
|
41 |
+
</div>
|
42 |
+
</div>
|
43 |
+
|
44 |
+
<div class="output-section">
|
45 |
+
<div class="output-header">
|
46 |
+
<label>
|
47 |
+
<span class="material-icons">translate</span>
|
48 |
+
Bengali
|
49 |
+
</label>
|
50 |
+
<button id="copyBtn" class="icon-btn" title="Copy translation">
|
51 |
+
<span class="material-icons">content_copy</span>
|
52 |
+
</button>
|
53 |
+
</div>
|
54 |
+
<div class="translation-result">
|
55 |
+
<p id="translationResult"></p>
|
56 |
+
<div class="loading-spinner" style="display: none;">
|
57 |
+
<div class="spinner"></div>
|
58 |
+
</div>
|
59 |
+
</div>
|
60 |
+
</div>
|
61 |
+
</div>
|
62 |
+
</div>
|
63 |
+
|
64 |
+
<script>
|
65 |
+
document.addEventListener('DOMContentLoaded', function() {
|
66 |
+
const userInput = document.getElementById('userInput');
|
67 |
+
const charCount = document.querySelector('.char-count');
|
68 |
+
const translateBtn = document.getElementById('translateBtn');
|
69 |
+
const clearBtn = document.getElementById('clearBtn');
|
70 |
+
const copyBtn = document.getElementById('copyBtn');
|
71 |
+
const translationResult = document.getElementById('translationResult');
|
72 |
+
const loadingSpinner = document.querySelector('.loading-spinner');
|
73 |
+
|
74 |
+
// Character counter
|
75 |
+
userInput.addEventListener('input', function() {
|
76 |
+
charCount.textContent = `${this.value.length}/500`;
|
77 |
+
});
|
78 |
+
|
79 |
+
// Clear button
|
80 |
+
clearBtn.addEventListener('click', function() {
|
81 |
+
userInput.value = '';
|
82 |
+
translationResult.textContent = '';
|
83 |
+
charCount.textContent = '0/500';
|
84 |
+
});
|
85 |
+
|
86 |
+
// Copy button
|
87 |
+
copyBtn.addEventListener('click', function() {
|
88 |
+
if (translationResult.textContent) {
|
89 |
+
navigator.clipboard.writeText(translationResult.textContent)
|
90 |
+
.then(() => {
|
91 |
+
copyBtn.innerHTML = '<span class="material-icons">check</span>';
|
92 |
+
setTimeout(() => {
|
93 |
+
copyBtn.innerHTML = '<span class="material-icons">content_copy</span>';
|
94 |
+
}, 2000);
|
95 |
+
});
|
96 |
+
}
|
97 |
+
});
|
98 |
+
|
99 |
+
// Translation
|
100 |
+
translateBtn.addEventListener('click', async function() {
|
101 |
+
const text = userInput.value.trim();
|
102 |
+
if (!text) {
|
103 |
+
showToast('Please enter some text first.');
|
104 |
+
return;
|
105 |
+
}
|
106 |
+
|
107 |
+
// Show loading state
|
108 |
+
loadingSpinner.style.display = 'flex';
|
109 |
+
translateBtn.disabled = true;
|
110 |
+
translationResult.style.opacity = '0.5';
|
111 |
+
|
112 |
+
try {
|
113 |
+
const response = await fetch('/translate', {
|
114 |
+
method: 'POST',
|
115 |
+
headers: { 'Content-Type': 'application/json' },
|
116 |
+
body: JSON.stringify({ text: text })
|
117 |
+
});
|
118 |
+
|
119 |
+
if (!response.ok) throw new Error(`Server error: ${response.status}`);
|
120 |
+
|
121 |
+
const data = await response.json();
|
122 |
+
translationResult.textContent = data.translation;
|
123 |
+
translationResult.style.opacity = '1';
|
124 |
+
} catch (error) {
|
125 |
+
console.error('Error:', error);
|
126 |
+
translationResult.textContent = 'An error occurred during translation.';
|
127 |
+
showToast('Translation failed. Please try again.');
|
128 |
+
} finally {
|
129 |
+
loadingSpinner.style.display = 'none';
|
130 |
+
translateBtn.disabled = false;
|
131 |
+
}
|
132 |
+
});
|
133 |
+
|
134 |
+
function showToast(message) {
|
135 |
+
const toast = document.createElement('div');
|
136 |
+
toast.className = 'toast';
|
137 |
+
toast.textContent = message;
|
138 |
+
document.body.appendChild(toast);
|
139 |
+
setTimeout(() => toast.remove(), 3000);
|
140 |
+
}
|
141 |
+
});
|
142 |
+
</script>
|
143 |
+
</body>
|
144 |
+
</html>
|