Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
| tokenizer = AutoTokenizer.from_pretrained("ukr-models/xlm-roberta-base-uk") | |
| model = AutoModelForSequenceClassification.from_pretrained( | |
| "ua-l/topics-classifier-xlm-roberta-base-uk-v2" | |
| ) | |
| topic_classifier = pipeline( | |
| task="text-classification", model=model, tokenizer=tokenizer, device="cpu", top_k=5 | |
| ) | |
| def predict(question): | |
| predictions = topic_classifier(question) | |
| topics = [] | |
| for prediction in predictions[0]: | |
| label = prediction["label"] | |
| probability = round(prediction["score"] * 100, 2) | |
| topics.append( | |
| { | |
| "label": label, | |
| "probability": probability, | |
| } | |
| ) | |
| return topics | |
| inputs = gr.Textbox(lines=2, label="Enter the text", value="Як отримати виплати ВПО?") | |
| outputs = gr.JSON(label="Output") | |
| demo = gr.Interface(fn=predict, inputs=inputs, outputs=outputs) | |
| demo.launch() |