Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from langchain.document_loaders import OnlinePDFLoader | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.llms import HuggingFaceHub | |
| from langchain.embeddings import HuggingFaceHubEmbeddings | |
| from langchain.vectorstores import Chroma | |
| from langchain.chains import RetrievalQA | |
| def loading_pdf(): return 'Loading...' | |
| def pdf_changes(pdf_doc, repo_id): | |
| loader = OnlinePDFLoader(pdf_doc.name) | |
| documents = loader.load() | |
| text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0) | |
| texts = text_splitter.split_documents(documents) | |
| embeddings = HuggingFaceHubEmbeddings() | |
| db = Chroma.from_documents(texts, embeddings) | |
| retriever = db.as_retriever() | |
| llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={'temperature': 0.1, 'max_new_tokens': 250}) | |
| global qa | |
| qa = RetrievalQA.from_chain_type(llm=llm, chain_type='stuff', retriever=retriever, return_source_documents=True) | |
| return "Ready" | |
| def add_text(history, text): | |
| history = history + [(text, None)] | |
| return history, '' | |
| def bot(history): | |
| response = infer(history[-1][0]) | |
| history[-1][1] = response['result'] | |
| return history | |
| def infer(question): | |
| query = question | |
| result = qa({'query': query}) | |
| return result | |
| css=""" | |
| #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
| """ | |
| title = """ | |
| <h1>Chat with PDF</h1> | |
| """ | |
| with gr.Blocks(css=css, theme='Taithrah/Minimal') as demo: | |
| with gr.Column(elem_id='col-container'): | |
| gr.HTML(title) | |
| with gr.Column(): | |
| pdf_doc = gr.File(label='Upload a PDF', file_types=['.pdf']) | |
| repo_id = gr.Dropdown(label='LLM', | |
| choices=[ | |
| 'mistralai/Mistral-7B-Instruct-v0.1', | |
| 'HuggingFaceH4/zephyr-7b-beta', | |
| 'meta-llama/Llama-2-7b-chat-hf', | |
| '01-ai/Yi-6B-200K' | |
| ], | |
| value='mistralai/Mistral-7B-Instruct-v0.1') | |
| with gr.Row(): | |
| langchain_status = gr.Textbox(label='Status', placeholder='', interactive=False) | |
| load_pdf = gr.Button('Load PDF to LangChain') | |
| chatbot = gr.Chatbot([], elem_id='chatbot')#.style(height=350) | |
| question = gr.Textbox(label='Question', placeholder='Type your query') | |
| submit_btn = gr.Button('Send') | |
| repo_id.change(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False) | |
| load_pdf.click(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False) | |
| question.submit(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot) | |
| submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot) | |
| demo.launch(max_size=32) |