ubermenchh commited on
Commit
5ea9e2b
Β·
1 Parent(s): e5dd3c0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from tqdm import tqdm
3
+ import requests, os, ctypes, json, argparse, os, array, sys
4
+
5
+ def ensure_file(filename, src):
6
+ if not os.path.exists(filename):
7
+ response = requests.get(src, stream=True)
8
+ total_size = int(response.headers.get('content-length', 0))
9
+
10
+ with open(filename, 'wb') as file:
11
+ with tqdm(total=total_size, unit='8', unit_scale=True, desc=filename, ncols=80) as progress_bar:
12
+ for data in response.iter_content(chunk_size=1024):
13
+ if data:
14
+ file.write(data)
15
+ progress_bar.update(len(data))
16
+
17
+ print(f'Download Completed.')
18
+
19
+ ensure_file("mmproj-model-f16.gguf", "https://huggingface.co/mys/ggml_llava-v1.5-7b/resolve/main/mmproj-model-f16.gguf")
20
+ ensure_file("ggml-model-q4_k.gguf", "https://huggingface.co/mys/ggml_llava-v1.5-7b/resolve/main/ggml-model-q4_k.gguf")
21
+
22
+ from llama_cpp import Llama, clip_model_load, llava_image_embed_make_with_filename, llava_image_embed_make_with_bytes, llava_image_embed_p, llava_image_embed_free, llava_validate_embed_size, llava_eval_image_embed
23
+
24
+ ctx_clip = clip_model_load("mmproj-model-f16.gguf".encode('utf-8'))
25
+ llm = Llama(model_path="ggml-model-q4_k.gguf", n_ctx=2048)
26
+
27
+ def generate(image, ins='Describe the image'):
28
+ if len(ins) < 1:
29
+ ins = 'Describe the image'
30
+ image_embed = llava_image_embed_make_with_filename(ctx_clip=ctx_clip, n_threads=1, filename=image.encode('utf-8'))
31
+
32
+ n_past = ctypes.c_int(llm.n_tokens)
33
+ n_past_p = ctypes.byref(n_past)
34
+ llava_eval_image_embed(llm.ctx, image_embed, llm.n_batch, n_past_p)
35
+ llm.n_tokens = n_past.value
36
+ llava_image_embed_free(image_embed)
37
+
38
+ llm.eval(llm.tokenize(ins.encode('utf-8')))
39
+
40
+ max_target_len = 256
41
+ res = ''
42
+ for i in range(max_target_len):
43
+ t_id = llm.sample(temp=0.3)
44
+ t = llm.detokenize([t_id]).decode('utf-8')
45
+ if t == '</s>':
46
+ break
47
+ res += t
48
+ llm.eval([t_id])
49
+
50
+ return res
51
+
52
+
53
+ iface = gr.Interface(generate, inputs=[gr.Image(type='filepath'), gr.Textbox()], outpus='text')
54
+ iface.launch()