import gradio as gr from tqdm import tqdm import requests, os, ctypes, json, argparse, os, array, sys def ensure_file(filename, src): if not os.path.exists(filename): response = requests.get(src, stream=True) total_size = int(response.headers.get('content-length', 0)) with open(filename, 'wb') as file: with tqdm(total=total_size, unit='B', unit_scale=True, desc=filename, ncols=80) as progress_bar: for data in response.iter_content(chunk_size=1024): if data: file.write(data) progress_bar.update(len(data)) print(f'Download Completed.') ensure_file("mmproj-model-f16.gguf", "https://huggingface.co/mys/ggml_llava-v1.5-7b/resolve/main/mmproj-model-f16.gguf") ensure_file("ggml-model-q4_k.gguf", "https://huggingface.co/mys/ggml_llava-v1.5-7b/resolve/main/ggml-model-q4_k.gguf") from llama_cpp import Llama, clip_model_load, llava_image_embed_make_with_filename, llava_image_embed_make_with_bytes, llava_image_embed_p, llava_image_embed_free, llava_validate_embed_size, llava_eval_image_embed ctx_clip = clip_model_load("mmproj-model-f16.gguf".encode('utf-8')) llm = Llama(model_path="ggml-model-q4_k.gguf", n_ctx=2048) def generate(image, ins='Describe the image'): if len(ins) < 1: ins = 'Describe the image' image_embed = llava_image_embed_make_with_filename(ctx_clip=ctx_clip, n_threads=1, filename=image.encode('utf8')) n_past = ctypes.c_int(llm.n_tokens) n_past_p = ctypes.byref(n_past) llava_eval_image_embed(llm.ctx, image_embed, llm.n_batch, n_past_p) llm.n_tokens = n_past.value llava_image_embed_free(image_embed) llm.eval(llm.tokenize(ins.encode('utf8'))) max_target_len = 256 res = '' for i in range(max_target_len): t_id = llm.sample(temp=0.3) t = llm.detokenize([t_id]).decode('utf8') if t == '': break res += t llm.eval([t_id]) return res iface = gr.Interface(generate, inputs=[gr.Image(type='filepath'), gr.Textbox()], outpus='text') iface.launch()