Spaces:
Runtime error
Runtime error
| import spaces | |
| import random | |
| import torch | |
| from huggingface_hub import snapshot_download | |
| from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor | |
| from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256 | |
| from kolors.models.modeling_chatglm import ChatGLMModel | |
| from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
| from kolors.models.unet_2d_condition import UNet2DConditionModel | |
| from diffusers import AutoencoderKL, EulerDiscreteScheduler | |
| import gradio as gr | |
| import numpy as np | |
| device = "cuda" | |
| ckpt_dir = '/home/lixiang46/Kolors/weights/Kolors' | |
| ckpt_IPA_dir = '/home/lixiang46/Kolors/weights/Kolors-IP-Adapter-Plus' | |
| # ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") | |
| # ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus") | |
| # Load models | |
| text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) | |
| tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
| vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) | |
| scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
| unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device) | |
| ip_img_size = 336 | |
| clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size) | |
| pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline( | |
| vae=vae,text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| force_zeros_for_empty_prompt=False | |
| ).to(device) | |
| pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=clip_image_processor, | |
| force_zeros_for_empty_prompt=False | |
| ).to(device) | |
| if hasattr(pipe_i2i.unet, 'encoder_hid_proj'): | |
| pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj | |
| pipe_i2i.load_ip_adapter( f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"]) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ip_adapter_image = None, ip_adapter_scale = None): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| if ip_adapter_image is None: | |
| image = pipe_t2i( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| width = width, | |
| height = height, | |
| generator = generator | |
| ).images[0] | |
| return image | |
| else: | |
| pipe_i2i.set_ip_adapter_scale([ip_adapter_scale]) | |
| image = pipe_i2i( | |
| prompt= prompt , | |
| ip_adapter_image=[ip_adapter_image], | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=1, | |
| generator=generator | |
| ).images[0] | |
| return image | |
| examples = [ | |
| ["一张瓢虫的照片,微距,变焦,高质量,电影,拿着一个牌子,写着“可图”", None, None], | |
| ["穿着黑色T恤衫,上面中文绿色大字写着“可图”", "image/test_ip.jpg", 0.5], | |
| ["一只可爱的小狗在奔跑", "image/test_ip2.png", 0.5] | |
| ] | |
| if torch.cuda.is_available(): | |
| power_device = "GPU" | |
| else: | |
| power_device = "CPU" | |
| css=""" | |
| #col-left { | |
| margin: 0 auto; | |
| max-width: 500px; | |
| } | |
| #col-right { | |
| margin: 0 auto; | |
| max-width: 750px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Row(): | |
| gr.Markdown(f""" | |
| # Kolors-IP-Adapter-Plus | |
| Currently running on {power_device}. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(elem_id="col-left"): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| with gr.Row(): | |
| ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=True, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=10, | |
| maximum=50, | |
| step=1, | |
| value=25, | |
| ) | |
| with gr.Row(): | |
| ip_adapter_scale = gr.Slider( | |
| label="Image influence scale", | |
| info="Use 1 for creating variations", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.5, | |
| ) | |
| with gr.Column(elem_id="col-right"): | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Row(): | |
| gr.Examples( | |
| examples = examples, | |
| inputs = [prompt, ip_adapter_image, ip_adapter_scale] | |
| ) | |
| run_button.click( | |
| fn = infer, | |
| inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ip_adapter_image, ip_adapter_scale], | |
| outputs = [result] | |
| ) | |
| demo.queue().launch(share=True) | |