Spaces:
Runtime error
Runtime error
fixed utils for cuda->cpu
Browse files
utils.py
CHANGED
|
@@ -51,1254 +51,4 @@ def ensure_checkpoint_exists(model_weights_filename):
|
|
| 51 |
print(
|
| 52 |
model_weights_filename,
|
| 53 |
" not found, you may need to manually download the model weights."
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
########### DeblurGAN function
|
| 57 |
-
def get_norm_layer(norm_type='instance'):
|
| 58 |
-
if norm_type == 'batch':
|
| 59 |
-
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
|
| 60 |
-
elif norm_type == 'instance':
|
| 61 |
-
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=True)
|
| 62 |
-
else:
|
| 63 |
-
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
|
| 64 |
-
return norm_layer
|
| 65 |
-
|
| 66 |
-
def _array_to_batch(x):
|
| 67 |
-
x = np.transpose(x, (2, 0, 1))
|
| 68 |
-
x = np.expand_dims(x, 0)
|
| 69 |
-
return torch.from_numpy(x)
|
| 70 |
-
|
| 71 |
-
def get_normalize():
|
| 72 |
-
normalize = albu.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 73 |
-
normalize = albu.Compose([normalize], additional_targets={'target': 'image'})
|
| 74 |
-
|
| 75 |
-
def process(a, b):
|
| 76 |
-
r = normalize(image=a, target=b)
|
| 77 |
-
return r['image'], r['target']
|
| 78 |
-
|
| 79 |
-
return process
|
| 80 |
-
|
| 81 |
-
def preprocess(x: np.ndarray, mask: Optional[np.ndarray]):
|
| 82 |
-
x, _ = get_normalize()(x, x)
|
| 83 |
-
if mask is None:
|
| 84 |
-
mask = np.ones_like(x, dtype=np.float32)
|
| 85 |
-
else:
|
| 86 |
-
mask = np.round(mask.astype('float32') / 255)
|
| 87 |
-
|
| 88 |
-
h, w, _ = x.shape
|
| 89 |
-
block_size = 32
|
| 90 |
-
min_height = (h // block_size + 1) * block_size
|
| 91 |
-
min_width = (w // block_size + 1) * block_size
|
| 92 |
-
|
| 93 |
-
pad_params = {'mode': 'constant',
|
| 94 |
-
'constant_values': 0,
|
| 95 |
-
'pad_width': ((0, min_height - h), (0, min_width - w), (0, 0))
|
| 96 |
-
}
|
| 97 |
-
x = np.pad(x, **pad_params)
|
| 98 |
-
mask = np.pad(mask, **pad_params)
|
| 99 |
-
|
| 100 |
-
return map(_array_to_batch, (x, mask)), h, w
|
| 101 |
-
|
| 102 |
-
def postprocess(x: torch.Tensor) -> np.ndarray:
|
| 103 |
-
x, = x
|
| 104 |
-
x = x.detach().cpu().float().numpy()
|
| 105 |
-
x = (np.transpose(x, (1, 2, 0)) + 1) / 2.0 * 255.0
|
| 106 |
-
return x.astype('uint8')
|
| 107 |
-
|
| 108 |
-
def sorted_glob(pattern):
|
| 109 |
-
return sorted(glob(pattern))
|
| 110 |
-
###########
|
| 111 |
-
|
| 112 |
-
def normalize(image: np.ndarray) -> np.ndarray:
|
| 113 |
-
"""Normalize the ``OpenCV.imread`` or ``skimage.io.imread`` data.
|
| 114 |
-
Args:
|
| 115 |
-
image (np.ndarray): The image data read by ``OpenCV.imread`` or ``skimage.io.imread``.
|
| 116 |
-
Returns:
|
| 117 |
-
Normalized image data. Data range [0, 1].
|
| 118 |
-
"""
|
| 119 |
-
return image.astype(np.float64) / 255.0
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
def unnormalize(image: np.ndarray) -> np.ndarray:
|
| 123 |
-
"""Un-normalize the ``OpenCV.imread`` or ``skimage.io.imread`` data.
|
| 124 |
-
Args:
|
| 125 |
-
image (np.ndarray): The image data read by ``OpenCV.imread`` or ``skimage.io.imread``.
|
| 126 |
-
Returns:
|
| 127 |
-
Denormalized image data. Data range [0, 255].
|
| 128 |
-
"""
|
| 129 |
-
return image.astype(np.float64) * 255.0
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
def image2tensor(image: np.ndarray, range_norm: bool, half: bool) -> torch.Tensor:
|
| 133 |
-
"""Convert ``PIL.Image`` to Tensor.
|
| 134 |
-
Args:
|
| 135 |
-
image (np.ndarray): The image data read by ``PIL.Image``
|
| 136 |
-
range_norm (bool): Scale [0, 1] data to between [-1, 1]
|
| 137 |
-
half (bool): Whether to convert torch.float32 similarly to torch.half type.
|
| 138 |
-
Returns:
|
| 139 |
-
Normalized image data
|
| 140 |
-
Examples:
|
| 141 |
-
>>> image = Image.open("image.bmp")
|
| 142 |
-
>>> tensor_image = image2tensor(image, range_norm=False, half=False)
|
| 143 |
-
"""
|
| 144 |
-
tensor = F.to_tensor(image)
|
| 145 |
-
|
| 146 |
-
if range_norm:
|
| 147 |
-
tensor = tensor.mul_(2.0).sub_(1.0)
|
| 148 |
-
if half:
|
| 149 |
-
tensor = tensor.half()
|
| 150 |
-
|
| 151 |
-
return tensor
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
def tensor2image(tensor: torch.Tensor, range_norm: bool, half: bool) -> Any:
|
| 155 |
-
"""Converts ``torch.Tensor`` to ``PIL.Image``.
|
| 156 |
-
Args:
|
| 157 |
-
tensor (torch.Tensor): The image that needs to be converted to ``PIL.Image``
|
| 158 |
-
range_norm (bool): Scale [-1, 1] data to between [0, 1]
|
| 159 |
-
half (bool): Whether to convert torch.float32 similarly to torch.half type.
|
| 160 |
-
Returns:
|
| 161 |
-
Convert image data to support PIL library
|
| 162 |
-
Examples:
|
| 163 |
-
>>> tensor = torch.randn([1, 3, 128, 128])
|
| 164 |
-
>>> image = tensor2image(tensor, range_norm=False, half=False)
|
| 165 |
-
"""
|
| 166 |
-
if range_norm:
|
| 167 |
-
tensor = tensor.add_(1.0).div_(2.0)
|
| 168 |
-
if half:
|
| 169 |
-
tensor = tensor.half()
|
| 170 |
-
|
| 171 |
-
image = tensor.squeeze_(0).permute(1, 2, 0).mul_(255).clamp_(0, 255).cpu().numpy().astype("uint8")
|
| 172 |
-
|
| 173 |
-
return image
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
def convert_rgb_to_y(image: Any) -> Any:
|
| 177 |
-
"""Convert RGB image or tensor image data to YCbCr(Y) format.
|
| 178 |
-
Args:
|
| 179 |
-
image: RGB image data read by ``PIL.Image''.
|
| 180 |
-
Returns:
|
| 181 |
-
Y image array data.
|
| 182 |
-
"""
|
| 183 |
-
if type(image) == np.ndarray:
|
| 184 |
-
return 16. + (64.738 * image[:, :, 0] + 129.057 * image[:, :, 1] + 25.064 * image[:, :, 2]) / 256.
|
| 185 |
-
elif type(image) == torch.Tensor:
|
| 186 |
-
if len(image.shape) == 4:
|
| 187 |
-
image = image.squeeze_(0)
|
| 188 |
-
return 16. + (64.738 * image[0, :, :] + 129.057 * image[1, :, :] + 25.064 * image[2, :, :]) / 256.
|
| 189 |
-
else:
|
| 190 |
-
raise Exception("Unknown Type", type(image))
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
def convert_rgb_to_ycbcr(image: Any) -> Any:
|
| 194 |
-
"""Convert RGB image or tensor image data to YCbCr format.
|
| 195 |
-
Args:
|
| 196 |
-
image: RGB image data read by ``PIL.Image''.
|
| 197 |
-
Returns:
|
| 198 |
-
YCbCr image array data.
|
| 199 |
-
"""
|
| 200 |
-
if type(image) == np.ndarray:
|
| 201 |
-
y = 16. + (64.738 * image[:, :, 0] + 129.057 * image[:, :, 1] + 25.064 * image[:, :, 2]) / 256.
|
| 202 |
-
cb = 128. + (-37.945 * image[:, :, 0] - 74.494 * image[:, :, 1] + 112.439 * image[:, :, 2]) / 256.
|
| 203 |
-
cr = 128. + (112.439 * image[:, :, 0] - 94.154 * image[:, :, 1] - 18.285 * image[:, :, 2]) / 256.
|
| 204 |
-
return np.array([y, cb, cr]).transpose([1, 2, 0])
|
| 205 |
-
elif type(image) == torch.Tensor:
|
| 206 |
-
if len(image.shape) == 4:
|
| 207 |
-
image = image.squeeze(0)
|
| 208 |
-
y = 16. + (64.738 * image[0, :, :] + 129.057 * image[1, :, :] + 25.064 * image[2, :, :]) / 256.
|
| 209 |
-
cb = 128. + (-37.945 * image[0, :, :] - 74.494 * image[1, :, :] + 112.439 * image[2, :, :]) / 256.
|
| 210 |
-
cr = 128. + (112.439 * image[0, :, :] - 94.154 * image[1, :, :] - 18.285 * image[2, :, :]) / 256.
|
| 211 |
-
return torch.cat([y, cb, cr], 0).permute(1, 2, 0)
|
| 212 |
-
else:
|
| 213 |
-
raise Exception("Unknown Type", type(image))
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
def convert_ycbcr_to_rgb(image: Any) -> Any:
|
| 217 |
-
"""Convert YCbCr format image to RGB format.
|
| 218 |
-
Args:
|
| 219 |
-
image: YCbCr image data read by ``PIL.Image''.
|
| 220 |
-
Returns:
|
| 221 |
-
RGB image array data.
|
| 222 |
-
"""
|
| 223 |
-
if type(image) == np.ndarray:
|
| 224 |
-
r = 298.082 * image[:, :, 0] / 256. + 408.583 * image[:, :, 2] / 256. - 222.921
|
| 225 |
-
g = 298.082 * image[:, :, 0] / 256. - 100.291 * image[:, :, 1] / 256. - 208.120 * image[:, :, 2] / 256. + 135.576
|
| 226 |
-
b = 298.082 * image[:, :, 0] / 256. + 516.412 * image[:, :, 1] / 256. - 276.836
|
| 227 |
-
return np.array([r, g, b]).transpose([1, 2, 0])
|
| 228 |
-
elif type(image) == torch.Tensor:
|
| 229 |
-
if len(image.shape) == 4:
|
| 230 |
-
image = image.squeeze(0)
|
| 231 |
-
r = 298.082 * image[0, :, :] / 256. + 408.583 * image[2, :, :] / 256. - 222.921
|
| 232 |
-
g = 298.082 * image[0, :, :] / 256. - 100.291 * image[1, :, :] / 256. - 208.120 * image[2, :, :] / 256. + 135.576
|
| 233 |
-
b = 298.082 * image[0, :, :] / 256. + 516.412 * image[1, :, :] / 256. - 276.836
|
| 234 |
-
return torch.cat([r, g, b], 0).permute(1, 2, 0)
|
| 235 |
-
else:
|
| 236 |
-
raise Exception("Unknown Type", type(image))
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
def center_crop(lr: Any, hr: Any, image_size: int, upscale_factor: int) -> [Any, Any]:
|
| 240 |
-
"""Cut ``PIL.Image`` in the center area of the image.
|
| 241 |
-
Args:
|
| 242 |
-
lr: Low-resolution image data read by ``PIL.Image``.
|
| 243 |
-
hr: High-resolution image data read by ``PIL.Image``.
|
| 244 |
-
image_size (int): The size of the captured image area. It should be the size of the high-resolution image.
|
| 245 |
-
upscale_factor (int): magnification factor.
|
| 246 |
-
Returns:
|
| 247 |
-
Randomly cropped low-resolution images and high-resolution images.
|
| 248 |
-
"""
|
| 249 |
-
w, h = hr.size
|
| 250 |
-
|
| 251 |
-
left = (w - image_size) // 2
|
| 252 |
-
top = (h - image_size) // 2
|
| 253 |
-
right = left + image_size
|
| 254 |
-
bottom = top + image_size
|
| 255 |
-
|
| 256 |
-
lr = lr.crop((left // upscale_factor,
|
| 257 |
-
top // upscale_factor,
|
| 258 |
-
right // upscale_factor,
|
| 259 |
-
bottom // upscale_factor))
|
| 260 |
-
hr = hr.crop((left, top, right, bottom))
|
| 261 |
-
|
| 262 |
-
return lr, hr
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
def random_crop(lr: Any, hr: Any, image_size: int, upscale_factor: int) -> [Any, Any]:
|
| 266 |
-
"""Will ``PIL.Image`` randomly capture the specified area of the image.
|
| 267 |
-
Args:
|
| 268 |
-
lr: Low-resolution image data read by ``PIL.Image``.
|
| 269 |
-
hr: High-resolution image data read by ``PIL.Image``.
|
| 270 |
-
image_size (int): The size of the captured image area. It should be the size of the high-resolution image.
|
| 271 |
-
upscale_factor (int): magnification factor.
|
| 272 |
-
Returns:
|
| 273 |
-
Randomly cropped low-resolution images and high-resolution images.
|
| 274 |
-
"""
|
| 275 |
-
w, h = hr.size
|
| 276 |
-
left = torch.randint(0, w - image_size + 1, size=(1,)).item()
|
| 277 |
-
top = torch.randint(0, h - image_size + 1, size=(1,)).item()
|
| 278 |
-
right = left + image_size
|
| 279 |
-
bottom = top + image_size
|
| 280 |
-
|
| 281 |
-
lr = lr.crop((left // upscale_factor,
|
| 282 |
-
top // upscale_factor,
|
| 283 |
-
right // upscale_factor,
|
| 284 |
-
bottom // upscale_factor))
|
| 285 |
-
hr = hr.crop((left, top, right, bottom))
|
| 286 |
-
|
| 287 |
-
return lr, hr
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
def random_rotate(lr: Any, hr: Any, angle: int) -> [Any, Any]:
|
| 291 |
-
"""Will ``PIL.Image`` randomly rotate the image.
|
| 292 |
-
Args:
|
| 293 |
-
lr: Low-resolution image data read by ``PIL.Image``.
|
| 294 |
-
hr: High-resolution image data read by ``PIL.Image``.
|
| 295 |
-
angle (int): rotation angle, clockwise and counterclockwise rotation.
|
| 296 |
-
Returns:
|
| 297 |
-
Randomly rotated low-resolution images and high-resolution images.
|
| 298 |
-
"""
|
| 299 |
-
angle = random.choice((+angle, -angle))
|
| 300 |
-
lr = F.rotate(lr, angle)
|
| 301 |
-
hr = F.rotate(hr, angle)
|
| 302 |
-
|
| 303 |
-
return lr, hr
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
def random_horizontally_flip(lr: Any, hr: Any, p=0.5) -> [Any, Any]:
|
| 307 |
-
"""Flip the ``PIL.Image`` image horizontally randomly.
|
| 308 |
-
Args:
|
| 309 |
-
lr: Low-resolution image data read by ``PIL.Image``.
|
| 310 |
-
hr: High-resolution image data read by ``PIL.Image``.
|
| 311 |
-
p (optional, float): rollover probability. (Default: 0.5)
|
| 312 |
-
Returns:
|
| 313 |
-
Low-resolution image and high-resolution image after random horizontal flip.
|
| 314 |
-
"""
|
| 315 |
-
if torch.rand(1).item() > p:
|
| 316 |
-
lr = F.hflip(lr)
|
| 317 |
-
hr = F.hflip(hr)
|
| 318 |
-
|
| 319 |
-
return lr, hr
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
def random_vertically_flip(lr: Any, hr: Any, p=0.5) -> [Any, Any]:
|
| 323 |
-
"""Turn the ``PIL.Image`` image upside down randomly.
|
| 324 |
-
Args:
|
| 325 |
-
lr: Low-resolution image data read by ``PIL.Image``.
|
| 326 |
-
hr: High-resolution image data read by ``PIL.Image``.
|
| 327 |
-
p (optional, float): rollover probability. (Default: 0.5)
|
| 328 |
-
Returns:
|
| 329 |
-
Randomly rotated up and down low-resolution images and high-resolution images.
|
| 330 |
-
"""
|
| 331 |
-
if torch.rand(1).item() > p:
|
| 332 |
-
lr = F.vflip(lr)
|
| 333 |
-
hr = F.vflip(hr)
|
| 334 |
-
|
| 335 |
-
return lr, hr
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
def random_adjust_brightness(lr: Any, hr: Any) -> [Any, Any]:
|
| 339 |
-
"""Set ``PIL.Image`` to randomly adjust the image brightness.
|
| 340 |
-
Args:
|
| 341 |
-
lr: Low-resolution image data read by ``PIL.Image``.
|
| 342 |
-
hr: High-resolution image data read by ``PIL.Image``.
|
| 343 |
-
Returns:
|
| 344 |
-
Low-resolution image and high-resolution image with randomly adjusted brightness.
|
| 345 |
-
"""
|
| 346 |
-
# Randomly adjust the brightness gain range.
|
| 347 |
-
factor = random.uniform(0.5, 2)
|
| 348 |
-
lr = F.adjust_brightness(lr, factor)
|
| 349 |
-
hr = F.adjust_brightness(hr, factor)
|
| 350 |
-
|
| 351 |
-
return lr, hr
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
def random_adjust_contrast(lr: Any, hr: Any) -> [Any, Any]:
|
| 355 |
-
"""Set ``PIL.Image`` to randomly adjust the image contrast.
|
| 356 |
-
Args:
|
| 357 |
-
lr: Low-resolution image data read by ``PIL.Image``.
|
| 358 |
-
hr: High-resolution image data read by ``PIL.Image``.
|
| 359 |
-
Returns:
|
| 360 |
-
Low-resolution image and high-resolution image with randomly adjusted contrast.
|
| 361 |
-
"""
|
| 362 |
-
# Randomly adjust the contrast gain range.
|
| 363 |
-
factor = random.uniform(0.5, 2)
|
| 364 |
-
lr = F.adjust_contrast(lr, factor)
|
| 365 |
-
hr = F.adjust_contrast(hr, factor)
|
| 366 |
-
|
| 367 |
-
return lr, hr
|
| 368 |
-
|
| 369 |
-
#### metrics to compute -- assumes single images, i.e., tensor of 3 dims
|
| 370 |
-
def img_mae(x1, x2):
|
| 371 |
-
m = torch.abs(x1-x2).mean()
|
| 372 |
-
return m
|
| 373 |
-
|
| 374 |
-
def img_mse(x1, x2):
|
| 375 |
-
m = torch.pow(torch.abs(x1-x2),2).mean()
|
| 376 |
-
return m
|
| 377 |
-
|
| 378 |
-
def img_psnr(x1, x2):
|
| 379 |
-
m = kornia.metrics.psnr(x1, x2, 1)
|
| 380 |
-
return m
|
| 381 |
-
|
| 382 |
-
def img_ssim(x1, x2):
|
| 383 |
-
m = kornia.metrics.ssim(x1.unsqueeze(0), x2.unsqueeze(0), 5)
|
| 384 |
-
m = m.mean()
|
| 385 |
-
return m
|
| 386 |
-
|
| 387 |
-
def show_SR_w_uncer(xLR, xHR, xSR, xSRvar, elim=(0,0.01), ulim=(0,0.15)):
|
| 388 |
-
'''
|
| 389 |
-
xLR/SR/HR: 3xHxW
|
| 390 |
-
xSRvar: 1xHxW
|
| 391 |
-
'''
|
| 392 |
-
plt.figure(figsize=(30,10))
|
| 393 |
-
|
| 394 |
-
plt.subplot(1,5,1)
|
| 395 |
-
plt.imshow(xLR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1))
|
| 396 |
-
plt.axis('off')
|
| 397 |
-
|
| 398 |
-
plt.subplot(1,5,2)
|
| 399 |
-
plt.imshow(xHR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1))
|
| 400 |
-
plt.axis('off')
|
| 401 |
-
|
| 402 |
-
plt.subplot(1,5,3)
|
| 403 |
-
plt.imshow(xSR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1))
|
| 404 |
-
plt.axis('off')
|
| 405 |
-
|
| 406 |
-
plt.subplot(1,5,4)
|
| 407 |
-
error_map = torch.mean(torch.pow(torch.abs(xSR-xHR),2), dim=0).to('cpu').data.unsqueeze(0)
|
| 408 |
-
print('error', error_map.min(), error_map.max())
|
| 409 |
-
plt.imshow(error_map.transpose(0,2).transpose(0,1), cmap='jet')
|
| 410 |
-
plt.clim(elim[0], elim[1])
|
| 411 |
-
plt.axis('off')
|
| 412 |
-
|
| 413 |
-
plt.subplot(1,5,5)
|
| 414 |
-
print('uncer', xSRvar.min(), xSRvar.max())
|
| 415 |
-
plt.imshow(xSRvar.to('cpu').data.transpose(0,2).transpose(0,1), cmap='hot')
|
| 416 |
-
plt.clim(ulim[0], ulim[1])
|
| 417 |
-
plt.axis('off')
|
| 418 |
-
|
| 419 |
-
plt.subplots_adjust(wspace=0, hspace=0)
|
| 420 |
-
plt.show()
|
| 421 |
-
|
| 422 |
-
def show_SR_w_err(xLR, xHR, xSR, elim=(0,0.01), task=None, xMask=None):
|
| 423 |
-
'''
|
| 424 |
-
xLR/SR/HR: 3xHxW
|
| 425 |
-
'''
|
| 426 |
-
plt.figure(figsize=(30,10))
|
| 427 |
-
|
| 428 |
-
if task != 'm':
|
| 429 |
-
plt.subplot(1,4,1)
|
| 430 |
-
plt.imshow(xLR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1))
|
| 431 |
-
plt.axis('off')
|
| 432 |
-
|
| 433 |
-
plt.subplot(1,4,2)
|
| 434 |
-
plt.imshow(xHR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1))
|
| 435 |
-
plt.axis('off')
|
| 436 |
-
|
| 437 |
-
plt.subplot(1,4,3)
|
| 438 |
-
plt.imshow(xSR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1))
|
| 439 |
-
plt.axis('off')
|
| 440 |
-
else:
|
| 441 |
-
plt.subplot(1,4,1)
|
| 442 |
-
plt.imshow(xLR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1), cmap='gray')
|
| 443 |
-
plt.clim(0,0.9)
|
| 444 |
-
plt.axis('off')
|
| 445 |
-
|
| 446 |
-
plt.subplot(1,4,2)
|
| 447 |
-
plt.imshow(xHR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1), cmap='gray')
|
| 448 |
-
plt.clim(0,0.9)
|
| 449 |
-
plt.axis('off')
|
| 450 |
-
|
| 451 |
-
plt.subplot(1,4,3)
|
| 452 |
-
plt.imshow(xSR.to('cpu').data.clip(0,1).transpose(0,2).transpose(0,1), cmap='gray')
|
| 453 |
-
plt.clim(0,0.9)
|
| 454 |
-
plt.axis('off')
|
| 455 |
-
|
| 456 |
-
plt.subplot(1,4,4)
|
| 457 |
-
if task == 'inpainting':
|
| 458 |
-
error_map = torch.mean(torch.pow(torch.abs(xSR-xHR),2), dim=0).to('cpu').data.unsqueeze(0)*xMask.to('cpu').data
|
| 459 |
-
else:
|
| 460 |
-
error_map = torch.mean(torch.pow(torch.abs(xSR-xHR),2), dim=0).to('cpu').data.unsqueeze(0)
|
| 461 |
-
print('error', error_map.min(), error_map.max())
|
| 462 |
-
plt.imshow(error_map.transpose(0,2).transpose(0,1), cmap='jet')
|
| 463 |
-
plt.clim(elim[0], elim[1])
|
| 464 |
-
plt.axis('off')
|
| 465 |
-
|
| 466 |
-
plt.subplots_adjust(wspace=0, hspace=0)
|
| 467 |
-
plt.show()
|
| 468 |
-
|
| 469 |
-
def show_uncer4(xSRvar1, xSRvar2, xSRvar3, xSRvar4, ulim=(0,0.15)):
|
| 470 |
-
'''
|
| 471 |
-
xSRvar: 1xHxW
|
| 472 |
-
'''
|
| 473 |
-
plt.figure(figsize=(30,10))
|
| 474 |
-
|
| 475 |
-
plt.subplot(1,4,1)
|
| 476 |
-
print('uncer', xSRvar1.min(), xSRvar1.max())
|
| 477 |
-
plt.imshow(xSRvar1.to('cpu').data.transpose(0,2).transpose(0,1), cmap='hot')
|
| 478 |
-
plt.clim(ulim[0], ulim[1])
|
| 479 |
-
plt.axis('off')
|
| 480 |
-
|
| 481 |
-
plt.subplot(1,4,2)
|
| 482 |
-
print('uncer', xSRvar2.min(), xSRvar2.max())
|
| 483 |
-
plt.imshow(xSRvar2.to('cpu').data.transpose(0,2).transpose(0,1), cmap='hot')
|
| 484 |
-
plt.clim(ulim[0], ulim[1])
|
| 485 |
-
plt.axis('off')
|
| 486 |
-
|
| 487 |
-
plt.subplot(1,4,3)
|
| 488 |
-
print('uncer', xSRvar3.min(), xSRvar3.max())
|
| 489 |
-
plt.imshow(xSRvar3.to('cpu').data.transpose(0,2).transpose(0,1), cmap='hot')
|
| 490 |
-
plt.clim(ulim[0], ulim[1])
|
| 491 |
-
plt.axis('off')
|
| 492 |
-
|
| 493 |
-
plt.subplot(1,4,4)
|
| 494 |
-
print('uncer', xSRvar4.min(), xSRvar4.max())
|
| 495 |
-
plt.imshow(xSRvar4.to('cpu').data.transpose(0,2).transpose(0,1), cmap='hot')
|
| 496 |
-
plt.clim(ulim[0], ulim[1])
|
| 497 |
-
plt.axis('off')
|
| 498 |
-
|
| 499 |
-
plt.subplots_adjust(wspace=0, hspace=0)
|
| 500 |
-
plt.show()
|
| 501 |
-
|
| 502 |
-
def get_UCE(list_err, list_yout_var, num_bins=100):
|
| 503 |
-
err_min = np.min(list_err)
|
| 504 |
-
err_max = np.max(list_err)
|
| 505 |
-
err_len = (err_max-err_min)/num_bins
|
| 506 |
-
num_points = len(list_err)
|
| 507 |
-
|
| 508 |
-
bin_stats = {}
|
| 509 |
-
for i in range(num_bins):
|
| 510 |
-
bin_stats[i] = {
|
| 511 |
-
'start_idx': err_min + i*err_len,
|
| 512 |
-
'end_idx': err_min + (i+1)*err_len,
|
| 513 |
-
'num_points': 0,
|
| 514 |
-
'mean_err': 0,
|
| 515 |
-
'mean_var': 0,
|
| 516 |
-
}
|
| 517 |
-
|
| 518 |
-
for e,v in zip(list_err, list_yout_var):
|
| 519 |
-
for i in range(num_bins):
|
| 520 |
-
if e>=bin_stats[i]['start_idx'] and e<bin_stats[i]['end_idx']:
|
| 521 |
-
bin_stats[i]['num_points'] += 1
|
| 522 |
-
bin_stats[i]['mean_err'] += e
|
| 523 |
-
bin_stats[i]['mean_var'] += v
|
| 524 |
-
|
| 525 |
-
uce = 0
|
| 526 |
-
eps = 1e-8
|
| 527 |
-
for i in range(num_bins):
|
| 528 |
-
bin_stats[i]['mean_err'] /= bin_stats[i]['num_points'] + eps
|
| 529 |
-
bin_stats[i]['mean_var'] /= bin_stats[i]['num_points'] + eps
|
| 530 |
-
bin_stats[i]['uce_bin'] = (bin_stats[i]['num_points']/num_points) \
|
| 531 |
-
*(np.abs(bin_stats[i]['mean_err'] - bin_stats[i]['mean_var']))
|
| 532 |
-
uce += bin_stats[i]['uce_bin']
|
| 533 |
-
|
| 534 |
-
list_x, list_y = [], []
|
| 535 |
-
for i in range(num_bins):
|
| 536 |
-
if bin_stats[i]['num_points']>0:
|
| 537 |
-
list_x.append(bin_stats[i]['mean_err'])
|
| 538 |
-
list_y.append(bin_stats[i]['mean_var'])
|
| 539 |
-
|
| 540 |
-
# sns.set_style('darkgrid')
|
| 541 |
-
# sns.scatterplot(x=list_x, y=list_y)
|
| 542 |
-
# sns.regplot(x=list_x, y=list_y, order=1)
|
| 543 |
-
# plt.xlabel('MSE', fontsize=34)
|
| 544 |
-
# plt.ylabel('Uncertainty', fontsize=34)
|
| 545 |
-
# plt.plot(list_x, list_x, color='r')
|
| 546 |
-
# plt.xlim(np.min(list_x), np.max(list_x))
|
| 547 |
-
# plt.ylim(np.min(list_err), np.max(list_x))
|
| 548 |
-
# plt.show()
|
| 549 |
-
|
| 550 |
-
return bin_stats, uce
|
| 551 |
-
|
| 552 |
-
##################### training BayesCap
|
| 553 |
-
def train_BayesCap(
|
| 554 |
-
NetC,
|
| 555 |
-
NetG,
|
| 556 |
-
train_loader,
|
| 557 |
-
eval_loader,
|
| 558 |
-
Cri = TempCombLoss(),
|
| 559 |
-
device='cuda',
|
| 560 |
-
dtype=torch.cuda.FloatTensor(),
|
| 561 |
-
init_lr=1e-4,
|
| 562 |
-
num_epochs=100,
|
| 563 |
-
eval_every=1,
|
| 564 |
-
ckpt_path='../ckpt/BayesCap',
|
| 565 |
-
T1=1e0,
|
| 566 |
-
T2=5e-2,
|
| 567 |
-
task=None,
|
| 568 |
-
):
|
| 569 |
-
NetC.to(device)
|
| 570 |
-
NetC.train()
|
| 571 |
-
NetG.to(device)
|
| 572 |
-
NetG.eval()
|
| 573 |
-
optimizer = torch.optim.Adam(list(NetC.parameters()), lr=init_lr)
|
| 574 |
-
optim_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, num_epochs)
|
| 575 |
-
|
| 576 |
-
score = -1e8
|
| 577 |
-
all_loss = []
|
| 578 |
-
for eph in range(num_epochs):
|
| 579 |
-
eph_loss = 0
|
| 580 |
-
with tqdm(train_loader, unit='batch') as tepoch:
|
| 581 |
-
for (idx, batch) in enumerate(tepoch):
|
| 582 |
-
if idx>2000:
|
| 583 |
-
break
|
| 584 |
-
tepoch.set_description('Epoch {}'.format(eph))
|
| 585 |
-
##
|
| 586 |
-
xLR, xHR = batch[0].to(device), batch[1].to(device)
|
| 587 |
-
xLR, xHR = xLR.type(dtype), xHR.type(dtype)
|
| 588 |
-
if task == 'inpainting':
|
| 589 |
-
xMask = random_mask(xLR.shape[0], (xLR.shape[2], xLR.shape[3]))
|
| 590 |
-
xMask = xMask.to(device).type(dtype)
|
| 591 |
-
# pass them through the network
|
| 592 |
-
with torch.no_grad():
|
| 593 |
-
if task == 'inpainting':
|
| 594 |
-
_, xSR1 = NetG(xLR, xMask)
|
| 595 |
-
elif task == 'depth':
|
| 596 |
-
xSR1 = NetG(xLR)[("disp", 0)]
|
| 597 |
-
else:
|
| 598 |
-
xSR1 = NetG(xLR)
|
| 599 |
-
# with torch.autograd.set_detect_anomaly(True):
|
| 600 |
-
xSR = xSR1.clone()
|
| 601 |
-
xSRC_mu, xSRC_alpha, xSRC_beta = NetC(xSR)
|
| 602 |
-
# print(xSRC_alpha)
|
| 603 |
-
optimizer.zero_grad()
|
| 604 |
-
if task == 'depth':
|
| 605 |
-
loss = Cri(xSRC_mu, xSRC_alpha, xSRC_beta, xSR, T1=T1, T2=T2)
|
| 606 |
-
else:
|
| 607 |
-
loss = Cri(xSRC_mu, xSRC_alpha, xSRC_beta, xHR, T1=T1, T2=T2)
|
| 608 |
-
# print(loss)
|
| 609 |
-
loss.backward()
|
| 610 |
-
optimizer.step()
|
| 611 |
-
##
|
| 612 |
-
eph_loss += loss.item()
|
| 613 |
-
tepoch.set_postfix(loss=loss.item())
|
| 614 |
-
eph_loss /= len(train_loader)
|
| 615 |
-
all_loss.append(eph_loss)
|
| 616 |
-
print('Avg. loss: {}'.format(eph_loss))
|
| 617 |
-
# evaluate and save the models
|
| 618 |
-
torch.save(NetC.state_dict(), ckpt_path+'_last.pth')
|
| 619 |
-
if eph%eval_every == 0:
|
| 620 |
-
curr_score = eval_BayesCap(
|
| 621 |
-
NetC,
|
| 622 |
-
NetG,
|
| 623 |
-
eval_loader,
|
| 624 |
-
device=device,
|
| 625 |
-
dtype=dtype,
|
| 626 |
-
task=task,
|
| 627 |
-
)
|
| 628 |
-
print('current score: {} | Last best score: {}'.format(curr_score, score))
|
| 629 |
-
if curr_score >= score:
|
| 630 |
-
score = curr_score
|
| 631 |
-
torch.save(NetC.state_dict(), ckpt_path+'_best.pth')
|
| 632 |
-
optim_scheduler.step()
|
| 633 |
-
|
| 634 |
-
#### get different uncertainty maps
|
| 635 |
-
def get_uncer_BayesCap(
|
| 636 |
-
NetC,
|
| 637 |
-
NetG,
|
| 638 |
-
xin,
|
| 639 |
-
task=None,
|
| 640 |
-
xMask=None,
|
| 641 |
-
):
|
| 642 |
-
with torch.no_grad():
|
| 643 |
-
if task == 'inpainting':
|
| 644 |
-
_, xSR = NetG(xin, xMask)
|
| 645 |
-
else:
|
| 646 |
-
xSR = NetG(xin)
|
| 647 |
-
xSRC_mu, xSRC_alpha, xSRC_beta = NetC(xSR)
|
| 648 |
-
a_map = (1/(xSRC_alpha + 1e-5)).to('cpu').data
|
| 649 |
-
b_map = xSRC_beta.to('cpu').data
|
| 650 |
-
xSRvar = (a_map**2)*(torch.exp(torch.lgamma(3/(b_map + 1e-2)))/torch.exp(torch.lgamma(1/(b_map + 1e-2))))
|
| 651 |
-
|
| 652 |
-
return xSRvar
|
| 653 |
-
|
| 654 |
-
def get_uncer_TTDAp(
|
| 655 |
-
NetG,
|
| 656 |
-
xin,
|
| 657 |
-
p_mag=0.05,
|
| 658 |
-
num_runs=50,
|
| 659 |
-
task=None,
|
| 660 |
-
xMask=None,
|
| 661 |
-
):
|
| 662 |
-
list_xSR = []
|
| 663 |
-
with torch.no_grad():
|
| 664 |
-
for z in range(num_runs):
|
| 665 |
-
if task == 'inpainting':
|
| 666 |
-
_, xSRz = NetG(xin+p_mag*xin.max()*torch.randn_like(xin), xMask)
|
| 667 |
-
else:
|
| 668 |
-
xSRz = NetG(xin+p_mag*xin.max()*torch.randn_like(xin))
|
| 669 |
-
list_xSR.append(xSRz)
|
| 670 |
-
xSRmean = torch.mean(torch.cat(list_xSR, dim=0), dim=0).unsqueeze(0)
|
| 671 |
-
xSRvar = torch.mean(torch.var(torch.cat(list_xSR, dim=0), dim=0), dim=0).unsqueeze(0).unsqueeze(1)
|
| 672 |
-
return xSRvar
|
| 673 |
-
|
| 674 |
-
def get_uncer_DO(
|
| 675 |
-
NetG,
|
| 676 |
-
xin,
|
| 677 |
-
dop=0.2,
|
| 678 |
-
num_runs=50,
|
| 679 |
-
task=None,
|
| 680 |
-
xMask=None,
|
| 681 |
-
):
|
| 682 |
-
list_xSR = []
|
| 683 |
-
with torch.no_grad():
|
| 684 |
-
for z in range(num_runs):
|
| 685 |
-
if task == 'inpainting':
|
| 686 |
-
_, xSRz = NetG(xin, xMask, dop=dop)
|
| 687 |
-
else:
|
| 688 |
-
xSRz = NetG(xin, dop=dop)
|
| 689 |
-
list_xSR.append(xSRz)
|
| 690 |
-
xSRmean = torch.mean(torch.cat(list_xSR, dim=0), dim=0).unsqueeze(0)
|
| 691 |
-
xSRvar = torch.mean(torch.var(torch.cat(list_xSR, dim=0), dim=0), dim=0).unsqueeze(0).unsqueeze(1)
|
| 692 |
-
return xSRvar
|
| 693 |
-
|
| 694 |
-
################### Different eval functions
|
| 695 |
-
|
| 696 |
-
def eval_BayesCap(
|
| 697 |
-
NetC,
|
| 698 |
-
NetG,
|
| 699 |
-
eval_loader,
|
| 700 |
-
device='cuda',
|
| 701 |
-
dtype=torch.cuda.FloatTensor,
|
| 702 |
-
task=None,
|
| 703 |
-
xMask=None,
|
| 704 |
-
):
|
| 705 |
-
NetC.to(device)
|
| 706 |
-
NetC.eval()
|
| 707 |
-
NetG.to(device)
|
| 708 |
-
NetG.eval()
|
| 709 |
-
|
| 710 |
-
mean_ssim = 0
|
| 711 |
-
mean_psnr = 0
|
| 712 |
-
mean_mse = 0
|
| 713 |
-
mean_mae = 0
|
| 714 |
-
num_imgs = 0
|
| 715 |
-
list_error = []
|
| 716 |
-
list_var = []
|
| 717 |
-
with tqdm(eval_loader, unit='batch') as tepoch:
|
| 718 |
-
for (idx, batch) in enumerate(tepoch):
|
| 719 |
-
tepoch.set_description('Validating ...')
|
| 720 |
-
##
|
| 721 |
-
xLR, xHR = batch[0].to(device), batch[1].to(device)
|
| 722 |
-
xLR, xHR = xLR.type(dtype), xHR.type(dtype)
|
| 723 |
-
if task == 'inpainting':
|
| 724 |
-
if xMask==None:
|
| 725 |
-
xMask = random_mask(xLR.shape[0], (xLR.shape[2], xLR.shape[3]))
|
| 726 |
-
xMask = xMask.to(device).type(dtype)
|
| 727 |
-
else:
|
| 728 |
-
xMask = xMask.to(device).type(dtype)
|
| 729 |
-
# pass them through the network
|
| 730 |
-
with torch.no_grad():
|
| 731 |
-
if task == 'inpainting':
|
| 732 |
-
_, xSR = NetG(xLR, xMask)
|
| 733 |
-
elif task == 'depth':
|
| 734 |
-
xSR = NetG(xLR)[("disp", 0)]
|
| 735 |
-
else:
|
| 736 |
-
xSR = NetG(xLR)
|
| 737 |
-
xSRC_mu, xSRC_alpha, xSRC_beta = NetC(xSR)
|
| 738 |
-
a_map = (1/(xSRC_alpha + 1e-5)).to('cpu').data
|
| 739 |
-
b_map = xSRC_beta.to('cpu').data
|
| 740 |
-
xSRvar = (a_map**2)*(torch.exp(torch.lgamma(3/(b_map + 1e-2)))/torch.exp(torch.lgamma(1/(b_map + 1e-2))))
|
| 741 |
-
n_batch = xSRC_mu.shape[0]
|
| 742 |
-
if task == 'depth':
|
| 743 |
-
xHR = xSR
|
| 744 |
-
for j in range(n_batch):
|
| 745 |
-
num_imgs += 1
|
| 746 |
-
mean_ssim += img_ssim(xSRC_mu[j], xHR[j])
|
| 747 |
-
mean_psnr += img_psnr(xSRC_mu[j], xHR[j])
|
| 748 |
-
mean_mse += img_mse(xSRC_mu[j], xHR[j])
|
| 749 |
-
mean_mae += img_mae(xSRC_mu[j], xHR[j])
|
| 750 |
-
|
| 751 |
-
show_SR_w_uncer(xLR[j], xHR[j], xSR[j], xSRvar[j])
|
| 752 |
-
|
| 753 |
-
error_map = torch.mean(torch.pow(torch.abs(xSR[j]-xHR[j]),2), dim=0).to('cpu').data.reshape(-1)
|
| 754 |
-
var_map = xSRvar[j].to('cpu').data.reshape(-1)
|
| 755 |
-
list_error.extend(list(error_map.numpy()))
|
| 756 |
-
list_var.extend(list(var_map.numpy()))
|
| 757 |
-
##
|
| 758 |
-
mean_ssim /= num_imgs
|
| 759 |
-
mean_psnr /= num_imgs
|
| 760 |
-
mean_mse /= num_imgs
|
| 761 |
-
mean_mae /= num_imgs
|
| 762 |
-
print(
|
| 763 |
-
'Avg. SSIM: {} | Avg. PSNR: {} | Avg. MSE: {} | Avg. MAE: {}'.format
|
| 764 |
-
(
|
| 765 |
-
mean_ssim, mean_psnr, mean_mse, mean_mae
|
| 766 |
-
)
|
| 767 |
-
)
|
| 768 |
-
# print(len(list_error), len(list_var))
|
| 769 |
-
# print('UCE: ', get_UCE(list_error[::10], list_var[::10], num_bins=500)[1])
|
| 770 |
-
# print('C.Coeff: ', np.corrcoef(np.array(list_error[::10]), np.array(list_var[::10])))
|
| 771 |
-
return mean_ssim
|
| 772 |
-
|
| 773 |
-
def eval_TTDA_p(
|
| 774 |
-
NetG,
|
| 775 |
-
eval_loader,
|
| 776 |
-
device='cuda',
|
| 777 |
-
dtype=torch.cuda.FloatTensor,
|
| 778 |
-
p_mag=0.05,
|
| 779 |
-
num_runs=50,
|
| 780 |
-
task = None,
|
| 781 |
-
xMask = None,
|
| 782 |
-
):
|
| 783 |
-
NetG.to(device)
|
| 784 |
-
NetG.eval()
|
| 785 |
-
|
| 786 |
-
mean_ssim = 0
|
| 787 |
-
mean_psnr = 0
|
| 788 |
-
mean_mse = 0
|
| 789 |
-
mean_mae = 0
|
| 790 |
-
num_imgs = 0
|
| 791 |
-
with tqdm(eval_loader, unit='batch') as tepoch:
|
| 792 |
-
for (idx, batch) in enumerate(tepoch):
|
| 793 |
-
tepoch.set_description('Validating ...')
|
| 794 |
-
##
|
| 795 |
-
xLR, xHR = batch[0].to(device), batch[1].to(device)
|
| 796 |
-
xLR, xHR = xLR.type(dtype), xHR.type(dtype)
|
| 797 |
-
# pass them through the network
|
| 798 |
-
list_xSR = []
|
| 799 |
-
with torch.no_grad():
|
| 800 |
-
if task=='inpainting':
|
| 801 |
-
_, xSR = NetG(xLR, xMask)
|
| 802 |
-
else:
|
| 803 |
-
xSR = NetG(xLR)
|
| 804 |
-
for z in range(num_runs):
|
| 805 |
-
xSRz = NetG(xLR+p_mag*xLR.max()*torch.randn_like(xLR))
|
| 806 |
-
list_xSR.append(xSRz)
|
| 807 |
-
xSRmean = torch.mean(torch.cat(list_xSR, dim=0), dim=0).unsqueeze(0)
|
| 808 |
-
xSRvar = torch.mean(torch.var(torch.cat(list_xSR, dim=0), dim=0), dim=0).unsqueeze(0).unsqueeze(1)
|
| 809 |
-
n_batch = xSR.shape[0]
|
| 810 |
-
for j in range(n_batch):
|
| 811 |
-
num_imgs += 1
|
| 812 |
-
mean_ssim += img_ssim(xSR[j], xHR[j])
|
| 813 |
-
mean_psnr += img_psnr(xSR[j], xHR[j])
|
| 814 |
-
mean_mse += img_mse(xSR[j], xHR[j])
|
| 815 |
-
mean_mae += img_mae(xSR[j], xHR[j])
|
| 816 |
-
|
| 817 |
-
show_SR_w_uncer(xLR[j], xHR[j], xSR[j], xSRvar[j])
|
| 818 |
-
|
| 819 |
-
mean_ssim /= num_imgs
|
| 820 |
-
mean_psnr /= num_imgs
|
| 821 |
-
mean_mse /= num_imgs
|
| 822 |
-
mean_mae /= num_imgs
|
| 823 |
-
print(
|
| 824 |
-
'Avg. SSIM: {} | Avg. PSNR: {} | Avg. MSE: {} | Avg. MAE: {}'.format
|
| 825 |
-
(
|
| 826 |
-
mean_ssim, mean_psnr, mean_mse, mean_mae
|
| 827 |
-
)
|
| 828 |
-
)
|
| 829 |
-
|
| 830 |
-
return mean_ssim
|
| 831 |
-
|
| 832 |
-
def eval_DO(
|
| 833 |
-
NetG,
|
| 834 |
-
eval_loader,
|
| 835 |
-
device='cuda',
|
| 836 |
-
dtype=torch.cuda.FloatTensor,
|
| 837 |
-
dop=0.2,
|
| 838 |
-
num_runs=50,
|
| 839 |
-
task=None,
|
| 840 |
-
xMask=None,
|
| 841 |
-
):
|
| 842 |
-
NetG.to(device)
|
| 843 |
-
NetG.eval()
|
| 844 |
-
|
| 845 |
-
mean_ssim = 0
|
| 846 |
-
mean_psnr = 0
|
| 847 |
-
mean_mse = 0
|
| 848 |
-
mean_mae = 0
|
| 849 |
-
num_imgs = 0
|
| 850 |
-
with tqdm(eval_loader, unit='batch') as tepoch:
|
| 851 |
-
for (idx, batch) in enumerate(tepoch):
|
| 852 |
-
tepoch.set_description('Validating ...')
|
| 853 |
-
##
|
| 854 |
-
xLR, xHR = batch[0].to(device), batch[1].to(device)
|
| 855 |
-
xLR, xHR = xLR.type(dtype), xHR.type(dtype)
|
| 856 |
-
# pass them through the network
|
| 857 |
-
list_xSR = []
|
| 858 |
-
with torch.no_grad():
|
| 859 |
-
if task == 'inpainting':
|
| 860 |
-
_, xSR = NetG(xLR, xMask)
|
| 861 |
-
else:
|
| 862 |
-
xSR = NetG(xLR)
|
| 863 |
-
for z in range(num_runs):
|
| 864 |
-
xSRz = NetG(xLR, dop=dop)
|
| 865 |
-
list_xSR.append(xSRz)
|
| 866 |
-
xSRmean = torch.mean(torch.cat(list_xSR, dim=0), dim=0).unsqueeze(0)
|
| 867 |
-
xSRvar = torch.mean(torch.var(torch.cat(list_xSR, dim=0), dim=0), dim=0).unsqueeze(0).unsqueeze(1)
|
| 868 |
-
n_batch = xSR.shape[0]
|
| 869 |
-
for j in range(n_batch):
|
| 870 |
-
num_imgs += 1
|
| 871 |
-
mean_ssim += img_ssim(xSR[j], xHR[j])
|
| 872 |
-
mean_psnr += img_psnr(xSR[j], xHR[j])
|
| 873 |
-
mean_mse += img_mse(xSR[j], xHR[j])
|
| 874 |
-
mean_mae += img_mae(xSR[j], xHR[j])
|
| 875 |
-
|
| 876 |
-
show_SR_w_uncer(xLR[j], xHR[j], xSR[j], xSRvar[j])
|
| 877 |
-
##
|
| 878 |
-
mean_ssim /= num_imgs
|
| 879 |
-
mean_psnr /= num_imgs
|
| 880 |
-
mean_mse /= num_imgs
|
| 881 |
-
mean_mae /= num_imgs
|
| 882 |
-
print(
|
| 883 |
-
'Avg. SSIM: {} | Avg. PSNR: {} | Avg. MSE: {} | Avg. MAE: {}'.format
|
| 884 |
-
(
|
| 885 |
-
mean_ssim, mean_psnr, mean_mse, mean_mae
|
| 886 |
-
)
|
| 887 |
-
)
|
| 888 |
-
|
| 889 |
-
return mean_ssim
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
############### compare all function
|
| 893 |
-
def compare_all(
|
| 894 |
-
NetC,
|
| 895 |
-
NetG,
|
| 896 |
-
eval_loader,
|
| 897 |
-
p_mag = 0.05,
|
| 898 |
-
dop = 0.2,
|
| 899 |
-
num_runs = 100,
|
| 900 |
-
device='cuda',
|
| 901 |
-
dtype=torch.cuda.FloatTensor,
|
| 902 |
-
task=None,
|
| 903 |
-
):
|
| 904 |
-
NetC.to(device)
|
| 905 |
-
NetC.eval()
|
| 906 |
-
NetG.to(device)
|
| 907 |
-
NetG.eval()
|
| 908 |
-
|
| 909 |
-
with tqdm(eval_loader, unit='batch') as tepoch:
|
| 910 |
-
for (idx, batch) in enumerate(tepoch):
|
| 911 |
-
tepoch.set_description('Comparing ...')
|
| 912 |
-
##
|
| 913 |
-
xLR, xHR = batch[0].to(device), batch[1].to(device)
|
| 914 |
-
xLR, xHR = xLR.type(dtype), xHR.type(dtype)
|
| 915 |
-
if task == 'inpainting':
|
| 916 |
-
xMask = random_mask(xLR.shape[0], (xLR.shape[2], xLR.shape[3]))
|
| 917 |
-
xMask = xMask.to(device).type(dtype)
|
| 918 |
-
# pass them through the network
|
| 919 |
-
with torch.no_grad():
|
| 920 |
-
if task == 'inpainting':
|
| 921 |
-
_, xSR = NetG(xLR, xMask)
|
| 922 |
-
else:
|
| 923 |
-
xSR = NetG(xLR)
|
| 924 |
-
xSRC_mu, xSRC_alpha, xSRC_beta = NetC(xSR)
|
| 925 |
-
|
| 926 |
-
if task == 'inpainting':
|
| 927 |
-
xSRvar1 = get_uncer_TTDAp(NetG, xLR, p_mag=p_mag, num_runs=num_runs, task='inpainting', xMask=xMask)
|
| 928 |
-
xSRvar2 = get_uncer_DO(NetG, xLR, dop=dop, num_runs=num_runs, task='inpainting', xMask=xMask)
|
| 929 |
-
xSRvar3 = get_uncer_BayesCap(NetC, NetG, xLR, task='inpainting', xMask=xMask)
|
| 930 |
-
else:
|
| 931 |
-
xSRvar1 = get_uncer_TTDAp(NetG, xLR, p_mag=p_mag, num_runs=num_runs)
|
| 932 |
-
xSRvar2 = get_uncer_DO(NetG, xLR, dop=dop, num_runs=num_runs)
|
| 933 |
-
xSRvar3 = get_uncer_BayesCap(NetC, NetG, xLR)
|
| 934 |
-
|
| 935 |
-
print('bdg', xSRvar1.shape, xSRvar2.shape, xSRvar3.shape)
|
| 936 |
-
|
| 937 |
-
n_batch = xSR.shape[0]
|
| 938 |
-
for j in range(n_batch):
|
| 939 |
-
if task=='s':
|
| 940 |
-
show_SR_w_err(xLR[j], xHR[j], xSR[j])
|
| 941 |
-
show_uncer4(xSRvar1[j], torch.sqrt(xSRvar1[j]), torch.pow(xSRvar1[j], 0.48), torch.pow(xSRvar1[j], 0.42))
|
| 942 |
-
show_uncer4(xSRvar2[j], torch.sqrt(xSRvar2[j]), torch.pow(xSRvar3[j], 1.5), xSRvar3[j])
|
| 943 |
-
if task=='d':
|
| 944 |
-
show_SR_w_err(xLR[j], xHR[j], 0.5*xSR[j]+0.5*xHR[j])
|
| 945 |
-
show_uncer4(xSRvar1[j], torch.sqrt(xSRvar1[j]), torch.pow(xSRvar1[j], 0.48), torch.pow(xSRvar1[j], 0.42))
|
| 946 |
-
show_uncer4(xSRvar2[j], torch.sqrt(xSRvar2[j]), torch.pow(xSRvar3[j], 0.8), xSRvar3[j])
|
| 947 |
-
if task=='inpainting':
|
| 948 |
-
show_SR_w_err(xLR[j]*(1-xMask[j]), xHR[j], xSR[j], elim=(0,0.25), task='inpainting', xMask=xMask[j])
|
| 949 |
-
show_uncer4(xSRvar1[j], torch.sqrt(xSRvar1[j]), torch.pow(xSRvar1[j], 0.45), torch.pow(xSRvar1[j], 0.4))
|
| 950 |
-
show_uncer4(xSRvar2[j], torch.sqrt(xSRvar2[j]), torch.pow(xSRvar3[j], 0.8), xSRvar3[j])
|
| 951 |
-
if task=='m':
|
| 952 |
-
show_SR_w_err(xLR[j], xHR[j], xSR[j], elim=(0,0.04), task='m')
|
| 953 |
-
show_uncer4(0.4*xSRvar1[j]+0.6*xSRvar2[j], torch.sqrt(xSRvar1[j]), torch.pow(xSRvar1[j], 0.48), torch.pow(xSRvar1[j], 0.42), ulim=(0.02,0.15))
|
| 954 |
-
show_uncer4(xSRvar2[j], torch.sqrt(xSRvar2[j]), torch.pow(xSRvar3[j], 1.5), xSRvar3[j], ulim=(0.02,0.15))
|
| 955 |
-
|
| 956 |
-
|
| 957 |
-
################# Degrading Identity
|
| 958 |
-
def degrage_BayesCap_p(
|
| 959 |
-
NetC,
|
| 960 |
-
NetG,
|
| 961 |
-
eval_loader,
|
| 962 |
-
device='cuda',
|
| 963 |
-
dtype=torch.cuda.FloatTensor,
|
| 964 |
-
num_runs=50,
|
| 965 |
-
):
|
| 966 |
-
NetC.to(device)
|
| 967 |
-
NetC.eval()
|
| 968 |
-
NetG.to(device)
|
| 969 |
-
NetG.eval()
|
| 970 |
-
|
| 971 |
-
p_mag_list = [0, 0.05, 0.1, 0.15, 0.2]
|
| 972 |
-
list_s = []
|
| 973 |
-
list_p = []
|
| 974 |
-
list_u1 = []
|
| 975 |
-
list_u2 = []
|
| 976 |
-
list_c = []
|
| 977 |
-
for p_mag in p_mag_list:
|
| 978 |
-
mean_ssim = 0
|
| 979 |
-
mean_psnr = 0
|
| 980 |
-
mean_mse = 0
|
| 981 |
-
mean_mae = 0
|
| 982 |
-
num_imgs = 0
|
| 983 |
-
list_error = []
|
| 984 |
-
list_error2 = []
|
| 985 |
-
list_var = []
|
| 986 |
-
|
| 987 |
-
with tqdm(eval_loader, unit='batch') as tepoch:
|
| 988 |
-
for (idx, batch) in enumerate(tepoch):
|
| 989 |
-
tepoch.set_description('Validating ...')
|
| 990 |
-
##
|
| 991 |
-
xLR, xHR = batch[0].to(device), batch[1].to(device)
|
| 992 |
-
xLR, xHR = xLR.type(dtype), xHR.type(dtype)
|
| 993 |
-
# pass them through the network
|
| 994 |
-
with torch.no_grad():
|
| 995 |
-
xSR = NetG(xLR)
|
| 996 |
-
xSRC_mu, xSRC_alpha, xSRC_beta = NetC(xSR + p_mag*xSR.max()*torch.randn_like(xSR))
|
| 997 |
-
a_map = (1/(xSRC_alpha + 1e-5)).to('cpu').data
|
| 998 |
-
b_map = xSRC_beta.to('cpu').data
|
| 999 |
-
xSRvar = (a_map**2)*(torch.exp(torch.lgamma(3/(b_map + 1e-2)))/torch.exp(torch.lgamma(1/(b_map + 1e-2))))
|
| 1000 |
-
n_batch = xSRC_mu.shape[0]
|
| 1001 |
-
for j in range(n_batch):
|
| 1002 |
-
num_imgs += 1
|
| 1003 |
-
mean_ssim += img_ssim(xSRC_mu[j], xSR[j])
|
| 1004 |
-
mean_psnr += img_psnr(xSRC_mu[j], xSR[j])
|
| 1005 |
-
mean_mse += img_mse(xSRC_mu[j], xSR[j])
|
| 1006 |
-
mean_mae += img_mae(xSRC_mu[j], xSR[j])
|
| 1007 |
-
|
| 1008 |
-
error_map = torch.mean(torch.pow(torch.abs(xSR[j]-xHR[j]),2), dim=0).to('cpu').data.reshape(-1)
|
| 1009 |
-
error_map2 = torch.mean(torch.pow(torch.abs(xSRC_mu[j]-xHR[j]),2), dim=0).to('cpu').data.reshape(-1)
|
| 1010 |
-
var_map = xSRvar[j].to('cpu').data.reshape(-1)
|
| 1011 |
-
list_error.extend(list(error_map.numpy()))
|
| 1012 |
-
list_error2.extend(list(error_map2.numpy()))
|
| 1013 |
-
list_var.extend(list(var_map.numpy()))
|
| 1014 |
-
##
|
| 1015 |
-
mean_ssim /= num_imgs
|
| 1016 |
-
mean_psnr /= num_imgs
|
| 1017 |
-
mean_mse /= num_imgs
|
| 1018 |
-
mean_mae /= num_imgs
|
| 1019 |
-
print(
|
| 1020 |
-
'Avg. SSIM: {} | Avg. PSNR: {} | Avg. MSE: {} | Avg. MAE: {}'.format
|
| 1021 |
-
(
|
| 1022 |
-
mean_ssim, mean_psnr, mean_mse, mean_mae
|
| 1023 |
-
)
|
| 1024 |
-
)
|
| 1025 |
-
uce1 = get_UCE(list_error[::100], list_var[::100], num_bins=200)[1]
|
| 1026 |
-
uce2 = get_UCE(list_error2[::100], list_var[::100], num_bins=200)[1]
|
| 1027 |
-
print('UCE1: ', uce1)
|
| 1028 |
-
print('UCE2: ', uce2)
|
| 1029 |
-
list_s.append(mean_ssim.item())
|
| 1030 |
-
list_p.append(mean_psnr.item())
|
| 1031 |
-
list_u1.append(uce1)
|
| 1032 |
-
list_u2.append(uce2)
|
| 1033 |
-
|
| 1034 |
-
plt.plot(list_s)
|
| 1035 |
-
plt.show()
|
| 1036 |
-
plt.plot(list_p)
|
| 1037 |
-
plt.show()
|
| 1038 |
-
|
| 1039 |
-
plt.plot(list_u1, label='wrt SR output')
|
| 1040 |
-
plt.plot(list_u2, label='wrt BayesCap output')
|
| 1041 |
-
plt.legend()
|
| 1042 |
-
plt.show()
|
| 1043 |
-
|
| 1044 |
-
sns.set_style('darkgrid')
|
| 1045 |
-
fig,ax = plt.subplots()
|
| 1046 |
-
# make a plot
|
| 1047 |
-
ax.plot(p_mag_list, list_s, color="red", marker="o")
|
| 1048 |
-
# set x-axis label
|
| 1049 |
-
ax.set_xlabel("Reducing faithfulness of BayesCap Reconstruction",fontsize=10)
|
| 1050 |
-
# set y-axis label
|
| 1051 |
-
ax.set_ylabel("SSIM btwn BayesCap and SRGAN outputs", color="red",fontsize=10)
|
| 1052 |
-
|
| 1053 |
-
# twin object for two different y-axis on the sample plot
|
| 1054 |
-
ax2=ax.twinx()
|
| 1055 |
-
# make a plot with different y-axis using second axis object
|
| 1056 |
-
ax2.plot(p_mag_list, list_u1, color="blue", marker="o", label='UCE wrt to error btwn SRGAN output and GT')
|
| 1057 |
-
ax2.plot(p_mag_list, list_u2, color="orange", marker="o", label='UCE wrt to error btwn BayesCap output and GT')
|
| 1058 |
-
ax2.set_ylabel("UCE", color="green", fontsize=10)
|
| 1059 |
-
plt.legend(fontsize=10)
|
| 1060 |
-
plt.tight_layout()
|
| 1061 |
-
plt.show()
|
| 1062 |
-
|
| 1063 |
-
################# DeepFill_v2
|
| 1064 |
-
|
| 1065 |
-
# ----------------------------------------
|
| 1066 |
-
# PATH processing
|
| 1067 |
-
# ----------------------------------------
|
| 1068 |
-
def text_readlines(filename):
|
| 1069 |
-
# Try to read a txt file and return a list.Return [] if there was a mistake.
|
| 1070 |
-
try:
|
| 1071 |
-
file = open(filename, 'r')
|
| 1072 |
-
except IOError:
|
| 1073 |
-
error = []
|
| 1074 |
-
return error
|
| 1075 |
-
content = file.readlines()
|
| 1076 |
-
# This for loop deletes the EOF (like \n)
|
| 1077 |
-
for i in range(len(content)):
|
| 1078 |
-
content[i] = content[i][:len(content[i])-1]
|
| 1079 |
-
file.close()
|
| 1080 |
-
return content
|
| 1081 |
-
|
| 1082 |
-
def savetxt(name, loss_log):
|
| 1083 |
-
np_loss_log = np.array(loss_log)
|
| 1084 |
-
np.savetxt(name, np_loss_log)
|
| 1085 |
-
|
| 1086 |
-
def get_files(path):
|
| 1087 |
-
# read a folder, return the complete path
|
| 1088 |
-
ret = []
|
| 1089 |
-
for root, dirs, files in os.walk(path):
|
| 1090 |
-
for filespath in files:
|
| 1091 |
-
ret.append(os.path.join(root, filespath))
|
| 1092 |
-
return ret
|
| 1093 |
-
|
| 1094 |
-
def get_names(path):
|
| 1095 |
-
# read a folder, return the image name
|
| 1096 |
-
ret = []
|
| 1097 |
-
for root, dirs, files in os.walk(path):
|
| 1098 |
-
for filespath in files:
|
| 1099 |
-
ret.append(filespath)
|
| 1100 |
-
return ret
|
| 1101 |
-
|
| 1102 |
-
def text_save(content, filename, mode = 'a'):
|
| 1103 |
-
# save a list to a txt
|
| 1104 |
-
# Try to save a list variable in txt file.
|
| 1105 |
-
file = open(filename, mode)
|
| 1106 |
-
for i in range(len(content)):
|
| 1107 |
-
file.write(str(content[i]) + '\n')
|
| 1108 |
-
file.close()
|
| 1109 |
-
|
| 1110 |
-
def check_path(path):
|
| 1111 |
-
if not os.path.exists(path):
|
| 1112 |
-
os.makedirs(path)
|
| 1113 |
-
|
| 1114 |
-
# ----------------------------------------
|
| 1115 |
-
# Validation and Sample at training
|
| 1116 |
-
# ----------------------------------------
|
| 1117 |
-
def save_sample_png(sample_folder, sample_name, img_list, name_list, pixel_max_cnt = 255):
|
| 1118 |
-
# Save image one-by-one
|
| 1119 |
-
for i in range(len(img_list)):
|
| 1120 |
-
img = img_list[i]
|
| 1121 |
-
# Recover normalization: * 255 because last layer is sigmoid activated
|
| 1122 |
-
img = img * 255
|
| 1123 |
-
# Process img_copy and do not destroy the data of img
|
| 1124 |
-
img_copy = img.clone().data.permute(0, 2, 3, 1)[0, :, :, :].cpu().numpy()
|
| 1125 |
-
img_copy = np.clip(img_copy, 0, pixel_max_cnt)
|
| 1126 |
-
img_copy = img_copy.astype(np.uint8)
|
| 1127 |
-
img_copy = cv2.cvtColor(img_copy, cv2.COLOR_RGB2BGR)
|
| 1128 |
-
# Save to certain path
|
| 1129 |
-
save_img_name = sample_name + '_' + name_list[i] + '.jpg'
|
| 1130 |
-
save_img_path = os.path.join(sample_folder, save_img_name)
|
| 1131 |
-
cv2.imwrite(save_img_path, img_copy)
|
| 1132 |
-
|
| 1133 |
-
def psnr(pred, target, pixel_max_cnt = 255):
|
| 1134 |
-
mse = torch.mul(target - pred, target - pred)
|
| 1135 |
-
rmse_avg = (torch.mean(mse).item()) ** 0.5
|
| 1136 |
-
p = 20 * np.log10(pixel_max_cnt / rmse_avg)
|
| 1137 |
-
return p
|
| 1138 |
-
|
| 1139 |
-
def grey_psnr(pred, target, pixel_max_cnt = 255):
|
| 1140 |
-
pred = torch.sum(pred, dim = 0)
|
| 1141 |
-
target = torch.sum(target, dim = 0)
|
| 1142 |
-
mse = torch.mul(target - pred, target - pred)
|
| 1143 |
-
rmse_avg = (torch.mean(mse).item()) ** 0.5
|
| 1144 |
-
p = 20 * np.log10(pixel_max_cnt * 3 / rmse_avg)
|
| 1145 |
-
return p
|
| 1146 |
-
|
| 1147 |
-
def ssim(pred, target):
|
| 1148 |
-
pred = pred.clone().data.permute(0, 2, 3, 1).cpu().numpy()
|
| 1149 |
-
target = target.clone().data.permute(0, 2, 3, 1).cpu().numpy()
|
| 1150 |
-
target = target[0]
|
| 1151 |
-
pred = pred[0]
|
| 1152 |
-
ssim = skimage.measure.compare_ssim(target, pred, multichannel = True)
|
| 1153 |
-
return ssim
|
| 1154 |
-
|
| 1155 |
-
## for contextual attention
|
| 1156 |
-
|
| 1157 |
-
def extract_image_patches(images, ksizes, strides, rates, padding='same'):
|
| 1158 |
-
"""
|
| 1159 |
-
Extract patches from images and put them in the C output dimension.
|
| 1160 |
-
:param padding:
|
| 1161 |
-
:param images: [batch, channels, in_rows, in_cols]. A 4-D Tensor with shape
|
| 1162 |
-
:param ksizes: [ksize_rows, ksize_cols]. The size of the sliding window for
|
| 1163 |
-
each dimension of images
|
| 1164 |
-
:param strides: [stride_rows, stride_cols]
|
| 1165 |
-
:param rates: [dilation_rows, dilation_cols]
|
| 1166 |
-
:return: A Tensor
|
| 1167 |
-
"""
|
| 1168 |
-
assert len(images.size()) == 4
|
| 1169 |
-
assert padding in ['same', 'valid']
|
| 1170 |
-
batch_size, channel, height, width = images.size()
|
| 1171 |
-
|
| 1172 |
-
if padding == 'same':
|
| 1173 |
-
images = same_padding(images, ksizes, strides, rates)
|
| 1174 |
-
elif padding == 'valid':
|
| 1175 |
-
pass
|
| 1176 |
-
else:
|
| 1177 |
-
raise NotImplementedError('Unsupported padding type: {}.\
|
| 1178 |
-
Only "same" or "valid" are supported.'.format(padding))
|
| 1179 |
-
|
| 1180 |
-
unfold = torch.nn.Unfold(kernel_size=ksizes,
|
| 1181 |
-
dilation=rates,
|
| 1182 |
-
padding=0,
|
| 1183 |
-
stride=strides)
|
| 1184 |
-
patches = unfold(images)
|
| 1185 |
-
return patches # [N, C*k*k, L], L is the total number of such blocks
|
| 1186 |
-
|
| 1187 |
-
def same_padding(images, ksizes, strides, rates):
|
| 1188 |
-
assert len(images.size()) == 4
|
| 1189 |
-
batch_size, channel, rows, cols = images.size()
|
| 1190 |
-
out_rows = (rows + strides[0] - 1) // strides[0]
|
| 1191 |
-
out_cols = (cols + strides[1] - 1) // strides[1]
|
| 1192 |
-
effective_k_row = (ksizes[0] - 1) * rates[0] + 1
|
| 1193 |
-
effective_k_col = (ksizes[1] - 1) * rates[1] + 1
|
| 1194 |
-
padding_rows = max(0, (out_rows-1)*strides[0]+effective_k_row-rows)
|
| 1195 |
-
padding_cols = max(0, (out_cols-1)*strides[1]+effective_k_col-cols)
|
| 1196 |
-
# Pad the input
|
| 1197 |
-
padding_top = int(padding_rows / 2.)
|
| 1198 |
-
padding_left = int(padding_cols / 2.)
|
| 1199 |
-
padding_bottom = padding_rows - padding_top
|
| 1200 |
-
padding_right = padding_cols - padding_left
|
| 1201 |
-
paddings = (padding_left, padding_right, padding_top, padding_bottom)
|
| 1202 |
-
images = torch.nn.ZeroPad2d(paddings)(images)
|
| 1203 |
-
return images
|
| 1204 |
-
|
| 1205 |
-
def reduce_mean(x, axis=None, keepdim=False):
|
| 1206 |
-
if not axis:
|
| 1207 |
-
axis = range(len(x.shape))
|
| 1208 |
-
for i in sorted(axis, reverse=True):
|
| 1209 |
-
x = torch.mean(x, dim=i, keepdim=keepdim)
|
| 1210 |
-
return x
|
| 1211 |
-
|
| 1212 |
-
|
| 1213 |
-
def reduce_std(x, axis=None, keepdim=False):
|
| 1214 |
-
if not axis:
|
| 1215 |
-
axis = range(len(x.shape))
|
| 1216 |
-
for i in sorted(axis, reverse=True):
|
| 1217 |
-
x = torch.std(x, dim=i, keepdim=keepdim)
|
| 1218 |
-
return x
|
| 1219 |
-
|
| 1220 |
-
|
| 1221 |
-
def reduce_sum(x, axis=None, keepdim=False):
|
| 1222 |
-
if not axis:
|
| 1223 |
-
axis = range(len(x.shape))
|
| 1224 |
-
for i in sorted(axis, reverse=True):
|
| 1225 |
-
x = torch.sum(x, dim=i, keepdim=keepdim)
|
| 1226 |
-
return x
|
| 1227 |
-
|
| 1228 |
-
def random_mask(num_batch=1, mask_shape=(256,256)):
|
| 1229 |
-
list_mask = []
|
| 1230 |
-
for _ in range(num_batch):
|
| 1231 |
-
# rectangle mask
|
| 1232 |
-
image_height = mask_shape[0]
|
| 1233 |
-
image_width = mask_shape[1]
|
| 1234 |
-
max_delta_height = image_height//8
|
| 1235 |
-
max_delta_width = image_width//8
|
| 1236 |
-
height = image_height//4
|
| 1237 |
-
width = image_width//4
|
| 1238 |
-
max_t = image_height - height
|
| 1239 |
-
max_l = image_width - width
|
| 1240 |
-
t = random.randint(0, max_t)
|
| 1241 |
-
l = random.randint(0, max_l)
|
| 1242 |
-
# bbox = (t, l, height, width)
|
| 1243 |
-
h = random.randint(0, max_delta_height//2)
|
| 1244 |
-
w = random.randint(0, max_delta_width//2)
|
| 1245 |
-
mask = torch.zeros((1, 1, image_height, image_width))
|
| 1246 |
-
mask[:, :, t+h:t+height-h, l+w:l+width-w] = 1
|
| 1247 |
-
rect_mask = mask
|
| 1248 |
-
|
| 1249 |
-
# brush mask
|
| 1250 |
-
min_num_vertex = 4
|
| 1251 |
-
max_num_vertex = 12
|
| 1252 |
-
mean_angle = 2 * math.pi / 5
|
| 1253 |
-
angle_range = 2 * math.pi / 15
|
| 1254 |
-
min_width = 12
|
| 1255 |
-
max_width = 40
|
| 1256 |
-
H, W = image_height, image_width
|
| 1257 |
-
average_radius = math.sqrt(H*H+W*W) / 8
|
| 1258 |
-
mask = Image.new('L', (W, H), 0)
|
| 1259 |
-
|
| 1260 |
-
for _ in range(np.random.randint(1, 4)):
|
| 1261 |
-
num_vertex = np.random.randint(min_num_vertex, max_num_vertex)
|
| 1262 |
-
angle_min = mean_angle - np.random.uniform(0, angle_range)
|
| 1263 |
-
angle_max = mean_angle + np.random.uniform(0, angle_range)
|
| 1264 |
-
angles = []
|
| 1265 |
-
vertex = []
|
| 1266 |
-
for i in range(num_vertex):
|
| 1267 |
-
if i % 2 == 0:
|
| 1268 |
-
angles.append(2*math.pi - np.random.uniform(angle_min, angle_max))
|
| 1269 |
-
else:
|
| 1270 |
-
angles.append(np.random.uniform(angle_min, angle_max))
|
| 1271 |
-
|
| 1272 |
-
h, w = mask.size
|
| 1273 |
-
vertex.append((int(np.random.randint(0, w)), int(np.random.randint(0, h))))
|
| 1274 |
-
for i in range(num_vertex):
|
| 1275 |
-
r = np.clip(
|
| 1276 |
-
np.random.normal(loc=average_radius, scale=average_radius//2),
|
| 1277 |
-
0, 2*average_radius)
|
| 1278 |
-
new_x = np.clip(vertex[-1][0] + r * math.cos(angles[i]), 0, w)
|
| 1279 |
-
new_y = np.clip(vertex[-1][1] + r * math.sin(angles[i]), 0, h)
|
| 1280 |
-
vertex.append((int(new_x), int(new_y)))
|
| 1281 |
-
|
| 1282 |
-
draw = ImageDraw.Draw(mask)
|
| 1283 |
-
width = int(np.random.uniform(min_width, max_width))
|
| 1284 |
-
draw.line(vertex, fill=255, width=width)
|
| 1285 |
-
for v in vertex:
|
| 1286 |
-
draw.ellipse((v[0] - width//2,
|
| 1287 |
-
v[1] - width//2,
|
| 1288 |
-
v[0] + width//2,
|
| 1289 |
-
v[1] + width//2),
|
| 1290 |
-
fill=255)
|
| 1291 |
-
|
| 1292 |
-
if np.random.normal() > 0:
|
| 1293 |
-
mask.transpose(Image.FLIP_LEFT_RIGHT)
|
| 1294 |
-
if np.random.normal() > 0:
|
| 1295 |
-
mask.transpose(Image.FLIP_TOP_BOTTOM)
|
| 1296 |
-
|
| 1297 |
-
mask = transforms.ToTensor()(mask)
|
| 1298 |
-
mask = mask.reshape((1, 1, H, W))
|
| 1299 |
-
brush_mask = mask
|
| 1300 |
-
|
| 1301 |
-
mask = torch.cat([rect_mask, brush_mask], dim=1).max(dim=1, keepdim=True)[0]
|
| 1302 |
-
list_mask.append(mask)
|
| 1303 |
-
mask = torch.cat(list_mask, dim=0)
|
| 1304 |
-
return mask
|
|
|
|
| 51 |
print(
|
| 52 |
model_weights_filename,
|
| 53 |
" not found, you may need to manually download the model weights."
|
| 54 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|