Spaces:
Runtime error
Runtime error
| from pathlib import Path | |
| import librosa | |
| import numpy as np | |
| import torch | |
| def load_model(vec_path): | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print("load model(s) from {}".format(vec_path)) | |
| from fairseq import checkpoint_utils | |
| models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | |
| [vec_path], | |
| suffix="", | |
| ) | |
| model = models[0] | |
| model = model.to(device) | |
| model.eval() | |
| return model | |
| def get_vec_units(con_model, audio_path, dev): | |
| audio, sampling_rate = librosa.load(audio_path) | |
| if len(audio.shape) > 1: | |
| audio = librosa.to_mono(audio.transpose(1, 0)) | |
| if sampling_rate != 16000: | |
| audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) | |
| feats = torch.from_numpy(audio).float() | |
| if feats.dim() == 2: # double channels | |
| feats = feats.mean(-1) | |
| assert feats.dim() == 1, feats.dim() | |
| feats = feats.view(1, -1) | |
| padding_mask = torch.BoolTensor(feats.shape).fill_(False) | |
| inputs = { | |
| "source": feats.to(dev), | |
| "padding_mask": padding_mask.to(dev), | |
| "output_layer": 9, # layer 9 | |
| } | |
| with torch.no_grad(): | |
| logits = con_model.extract_features(**inputs) | |
| feats = con_model.final_proj(logits[0]) | |
| return feats | |
| if __name__ == '__main__': | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model_path = "../../checkpoints/checkpoint_best_legacy_500.pt" # checkpoint_best_legacy_500.pt | |
| vec_model = load_model(model_path) | |
| # 这个不用改,自动在根目录下所有wav的同文件夹生成其对应的npy | |
| file_lists = list(Path("../../data/vecfox").rglob('*.wav')) | |
| nums = len(file_lists) | |
| count = 0 | |
| for wav_path in file_lists: | |
| npy_path = wav_path.with_suffix(".npy") | |
| npy_content = get_vec_units(vec_model, str(wav_path), device).cpu().numpy()[0] | |
| np.save(str(npy_path), npy_content) | |
| count += 1 | |
| print(f"hubert process:{round(count * 100 / nums, 2)}%") | |