Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,19 @@
|
|
1 |
import pandas as pd
|
2 |
-
import streamlit as st
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torch
|
5 |
from datasets import load_dataset
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Load the model and tokenizer
|
8 |
-
model_name = "
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
|
12 |
# Define the emotion labels (based on the GoEmotions dataset)
|
13 |
emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval",
|
@@ -17,47 +23,22 @@ emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval",
|
|
17 |
"pride", "realization", "relief", "remorse", "sadness", "surprise",
|
18 |
"neutral"]
|
19 |
|
20 |
-
# Function to classify
|
21 |
-
def
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
with st.spinner('Running inference...'):
|
40 |
-
enron_data['emotion'] = enron_data['body'].apply(classify_emotion)
|
41 |
-
|
42 |
-
# Save the results to a CSV file
|
43 |
-
enron_data.to_csv("enron_emails_with_emotions.csv", index=False)
|
44 |
-
st.success("Inference completed and results saved!")
|
45 |
-
|
46 |
-
# Check if the results file exists and load it
|
47 |
-
try:
|
48 |
-
enron_data = pd.read_csv("enron_emails_with_emotions.csv")
|
49 |
-
|
50 |
-
# Dropdown for selecting an emotion
|
51 |
-
selected_emotion = st.selectbox("Select Emotion", emotion_labels)
|
52 |
-
|
53 |
-
# Filter emails based on the selected emotion
|
54 |
-
filtered_emails = enron_data[enron_data['emotion'] == selected_emotion].head(10)
|
55 |
-
|
56 |
-
# Display the filtered emails in a table
|
57 |
-
if not filtered_emails.empty:
|
58 |
-
st.write("Top 10 emails with emotion:", selected_emotion)
|
59 |
-
st.table(filtered_emails[['From', 'To', 'body', 'emotion']])
|
60 |
-
else:
|
61 |
-
st.write("No emails found with the selected emotion.")
|
62 |
-
except FileNotFoundError:
|
63 |
-
st.warning("Run inference first by clicking the 'Run Inference' button.")
|
|
|
1 |
import pandas as pd
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
# Check if GPU is available
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
# Load the Enron dataset
|
10 |
+
dataset = load_dataset("Hellisotherpeople/enron_emails_parsed")
|
11 |
+
enron_data = pd.DataFrame(dataset['train'])
|
12 |
+
|
13 |
# Load the model and tokenizer
|
14 |
+
model_name = "modelSamLowe/roberta-base-go_emotions"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
|
17 |
|
18 |
# Define the emotion labels (based on the GoEmotions dataset)
|
19 |
emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval",
|
|
|
23 |
"pride", "realization", "relief", "remorse", "sadness", "surprise",
|
24 |
"neutral"]
|
25 |
|
26 |
+
# Function to classify emotions in batches
|
27 |
+
def classify_emotions_in_batches(texts, batch_size=32):
|
28 |
+
results = []
|
29 |
+
for i in range(0, len(texts), batch_size):
|
30 |
+
batch = texts[i:i+batch_size]
|
31 |
+
inputs = tokenizer(batch, return_tensors="pt", truncation=True, padding=True).to(device)
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = model(**inputs)
|
34 |
+
logits = outputs.logits
|
35 |
+
predicted_class_ids = torch.argmax(logits, dim=-1).tolist()
|
36 |
+
results.extend(predicted_class_ids)
|
37 |
+
return results
|
38 |
+
|
39 |
+
# Apply emotion classification to the email content in batches
|
40 |
+
email_texts = enron_data['body'].tolist()
|
41 |
+
enron_data['emotion'] = classify_emotions_in_batches(email_texts, batch_size=32)
|
42 |
+
|
43 |
+
# Save the results to a CSV file
|
44 |
+
enron_data.to_csv("enron_emails_with_emotions.csv", index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|