Delete RobertaGoEmotionClassifier
Browse files- RobertaGoEmotionClassifier +0 -35
RobertaGoEmotionClassifier
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
-
import torch
|
4 |
-
from datasets import load_dataset
|
5 |
-
|
6 |
-
# Load the Enron dataset
|
7 |
-
dataset = load_dataset("Hellisotherpeople/enron_emails_parsed")
|
8 |
-
enron_data = pd.DataFrame(dataset['train'])
|
9 |
-
|
10 |
-
# Load the model and tokenizer
|
11 |
-
model_name = "modelSamLowe/roberta-base-go_emotions"
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
14 |
-
|
15 |
-
# Define the emotion labels (based on the GoEmotions dataset)
|
16 |
-
emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval",
|
17 |
-
"caring", "confusion", "curiosity", "desire", "disappointment",
|
18 |
-
"disapproval", "disgust", "embarrassment", "excitement", "fear",
|
19 |
-
"gratitude", "grief", "joy", "love", "nervousness", "optimism",
|
20 |
-
"pride", "realization", "relief", "remorse", "sadness", "surprise",
|
21 |
-
"neutral"]
|
22 |
-
|
23 |
-
# Function to classify emotion
|
24 |
-
def classify_emotion(text):
|
25 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
26 |
-
outputs = model(**inputs)
|
27 |
-
logits = outputs.logits
|
28 |
-
predicted_class_id = torch.argmax(logits, dim=-1).item()
|
29 |
-
return emotion_labels[predicted_class_id]
|
30 |
-
|
31 |
-
# Apply emotion classification to the email content
|
32 |
-
enron_data['emotion'] = enron_data['body'].apply(classify_emotion)
|
33 |
-
|
34 |
-
# Save the results to a CSV file
|
35 |
-
enron_data.to_csv("enron_emails_with_emotions.csv", index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|