Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,13 @@
|
|
1 |
import pandas as pd
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
|
|
5 |
|
6 |
# Check if GPU is available
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
|
9 |
-
# Load the Enron dataset
|
10 |
-
dataset = load_dataset("Hellisotherpeople/enron_emails_parsed")
|
11 |
-
enron_data = pd.DataFrame(dataset['train'])
|
12 |
-
|
13 |
# Load the model and tokenizer
|
14 |
model_name = "SamLowe/roberta-base-go_emotions"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -26,6 +24,7 @@ emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval",
|
|
26 |
# Function to classify emotions in batches
|
27 |
def classify_emotions_in_batches(texts, batch_size=32):
|
28 |
results = []
|
|
|
29 |
for i in range(0, len(texts), batch_size):
|
30 |
batch = texts[i:i+batch_size]
|
31 |
inputs = tokenizer(batch, return_tensors="pt", truncation=True, padding=True).to(device)
|
@@ -34,11 +33,48 @@ def classify_emotions_in_batches(texts, batch_size=32):
|
|
34 |
logits = outputs.logits
|
35 |
predicted_class_ids = torch.argmax(logits, dim=-1).tolist()
|
36 |
results.extend(predicted_class_ids)
|
|
|
|
|
|
|
|
|
|
|
37 |
return results
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
# Save the results to a CSV file
|
44 |
-
enron_data.to_csv("enron_emails_with_emotions.csv", index=False)
|
|
|
1 |
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torch
|
5 |
from datasets import load_dataset
|
6 |
+
import time
|
7 |
|
8 |
# Check if GPU is available
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
|
|
|
|
|
|
|
|
|
11 |
# Load the model and tokenizer
|
12 |
model_name = "SamLowe/roberta-base-go_emotions"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
24 |
# Function to classify emotions in batches
|
25 |
def classify_emotions_in_batches(texts, batch_size=32):
|
26 |
results = []
|
27 |
+
start_time = time.time()
|
28 |
for i in range(0, len(texts), batch_size):
|
29 |
batch = texts[i:i+batch_size]
|
30 |
inputs = tokenizer(batch, return_tensors="pt", truncation=True, padding=True).to(device)
|
|
|
33 |
logits = outputs.logits
|
34 |
predicted_class_ids = torch.argmax(logits, dim=-1).tolist()
|
35 |
results.extend(predicted_class_ids)
|
36 |
+
|
37 |
+
# Log progress
|
38 |
+
batch_time = time.time() - start_time
|
39 |
+
st.write(f"Processed batch {i//batch_size + 1} of {len(texts)//batch_size + 1} in {batch_time:.2f} seconds")
|
40 |
+
start_time = time.time()
|
41 |
return results
|
42 |
|
43 |
+
# Streamlit interface
|
44 |
+
st.title("Enron Emails Emotion Analysis")
|
45 |
+
|
46 |
+
# Button to run the inference script
|
47 |
+
if st.button("Run Inference"):
|
48 |
+
# Load the Enron dataset
|
49 |
+
with st.spinner('Loading dataset...'):
|
50 |
+
dataset = load_dataset("Hellisotherpeople/enron_emails_parsed")
|
51 |
+
enron_data = pd.DataFrame(dataset['train'])
|
52 |
+
|
53 |
+
# Apply emotion classification to the email content
|
54 |
+
with st.spinner('Running inference...'):
|
55 |
+
email_texts = enron_data['body'].tolist()
|
56 |
+
enron_data['emotion'] = classify_emotions_in_batches(email_texts, batch_size=32)
|
57 |
+
|
58 |
+
# Save the results to a CSV file
|
59 |
+
enron_data.to_csv("enron_emails_with_emotions.csv", index=False)
|
60 |
+
st.success("Inference completed and results saved!")
|
61 |
+
|
62 |
+
# Check if the results file exists and load it
|
63 |
+
try:
|
64 |
+
enron_data = pd.read_csv("enron_emails_with_emotions.csv")
|
65 |
+
|
66 |
+
# Dropdown for selecting an emotion
|
67 |
+
selected_emotion = st.selectbox("Select Emotion", emotion_labels)
|
68 |
+
|
69 |
+
# Filter emails based on the selected emotion
|
70 |
+
filtered_emails = enron_data[enron_data['emotion'] == selected_emotion].head(10)
|
71 |
+
|
72 |
+
# Display the filtered emails in a table
|
73 |
+
if not filtered_emails.empty:
|
74 |
+
st.write("Top 10 emails with emotion:", selected_emotion)
|
75 |
+
st.table(filtered_emails[['From', 'To', 'body', 'emotion']])
|
76 |
+
else:
|
77 |
+
st.write("No emails found with the selected emotion.")
|
78 |
+
except FileNotFoundError:
|
79 |
+
st.warning("Run inference first by clicking the 'Run Inference' button.")
|
80 |
|
|
|
|