Update app.py
Browse files
app.py
CHANGED
|
@@ -25,7 +25,8 @@ emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval",
|
|
| 25 |
def classify_emotions_in_batches(texts, batch_size=64):
|
| 26 |
results = []
|
| 27 |
start_time = time.time()
|
| 28 |
-
|
|
|
|
| 29 |
batch = texts[i:i+batch_size]
|
| 30 |
inputs = tokenizer(batch, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 31 |
with torch.no_grad():
|
|
@@ -36,7 +37,7 @@ def classify_emotions_in_batches(texts, batch_size=64):
|
|
| 36 |
|
| 37 |
# Log progress
|
| 38 |
batch_time = time.time() - start_time
|
| 39 |
-
st.write(f"Processed batch {i//batch_size + 1} of {
|
| 40 |
start_time = time.time()
|
| 41 |
return results
|
| 42 |
|
|
|
|
| 25 |
def classify_emotions_in_batches(texts, batch_size=64):
|
| 26 |
results = []
|
| 27 |
start_time = time.time()
|
| 28 |
+
num_batches = min(20, (len(texts) + batch_size - 1) // batch_size) # Calculate the number of batches to run (up to 20)
|
| 29 |
+
for i in range(0, num_batches * batch_size, batch_size):
|
| 30 |
batch = texts[i:i+batch_size]
|
| 31 |
inputs = tokenizer(batch, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 32 |
with torch.no_grad():
|
|
|
|
| 37 |
|
| 38 |
# Log progress
|
| 39 |
batch_time = time.time() - start_time
|
| 40 |
+
st.write(f"Processed batch {i//batch_size + 1} of {num_batches} in {batch_time:.2f} seconds")
|
| 41 |
start_time = time.time()
|
| 42 |
return results
|
| 43 |
|