umang018 commited on
Commit
c1880b4
·
verified ·
1 Parent(s): 708ef37

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -0
app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+ import torch
5
+ from datasets import load_dataset
6
+
7
+ # Load the model and tokenizer
8
+ model_name = "modelSamLowe/roberta-base-go_emotions"
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
11
+
12
+ # Define the emotion labels (based on the GoEmotions dataset)
13
+ emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval",
14
+ "caring", "confusion", "curiosity", "desire", "disappointment",
15
+ "disapproval", "disgust", "embarrassment", "excitement", "fear",
16
+ "gratitude", "grief", "joy", "love", "nervousness", "optimism",
17
+ "pride", "realization", "relief", "remorse", "sadness", "surprise",
18
+ "neutral"]
19
+
20
+ # Function to classify emotion
21
+ def classify_emotion(text):
22
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
23
+ outputs = model(**inputs)
24
+ logits = outputs.logits
25
+ predicted_class_id = torch.argmax(logits, dim=-1).item()
26
+ return emotion_labels[predicted_class_id]
27
+
28
+ # Streamlit interface
29
+ st.title("Enron Emails Emotion Analysis")
30
+
31
+ # Button to run the inference script
32
+ if st.button("Run Inference"):
33
+ # Load the Enron dataset
34
+ with st.spinner('Loading dataset...'):
35
+ dataset = load_dataset("Hellisotherpeople/enron_emails_parsed")
36
+ enron_data = pd.DataFrame(dataset['train'])
37
+
38
+ # Apply emotion classification to the email content
39
+ with st.spinner('Running inference...'):
40
+ enron_data['emotion'] = enron_data['body'].apply(classify_emotion)
41
+
42
+ # Save the results to a CSV file
43
+ enron_data.to_csv("enron_emails_with_emotions.csv", index=False)
44
+ st.success("Inference completed and results saved!")
45
+
46
+ # Check if the results file exists and load it
47
+ try:
48
+ enron_data = pd.read_csv("enron_emails_with_emotions.csv")
49
+
50
+ # Dropdown for selecting an emotion
51
+ selected_emotion = st.selectbox("Select Emotion", emotion_labels)
52
+
53
+ # Filter emails based on the selected emotion
54
+ filtered_emails = enron_data[enron_data['emotion'] == selected_emotion].head(10)
55
+
56
+ # Display the filtered emails in a table
57
+ if not filtered_emails.empty:
58
+ st.write("Top 10 emails with emotion:", selected_emotion)
59
+ st.table(filtered_emails[['From', 'To', 'body', 'emotion']])
60
+ else:
61
+ st.write("No emails found with the selected emotion.")
62
+ except FileNotFoundError:
63
+ st.warning("Run inference first by clicking the 'Run Inference' button.")