Update app.py
Browse files
app.py
CHANGED
@@ -22,7 +22,7 @@ emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval",
|
|
22 |
"neutral"]
|
23 |
|
24 |
# Function to classify emotions in batches
|
25 |
-
def classify_emotions_in_batches(texts, batch_size=
|
26 |
results = []
|
27 |
start_time = time.time()
|
28 |
for i in range(0, len(texts), batch_size):
|
@@ -53,7 +53,7 @@ if st.button("Run Inference"):
|
|
53 |
# Apply emotion classification to the email content
|
54 |
with st.spinner('Running inference...'):
|
55 |
email_texts = enron_data['body'].tolist()
|
56 |
-
enron_data['emotion'] = classify_emotions_in_batches(email_texts, batch_size=
|
57 |
|
58 |
# Save the results to a CSV file
|
59 |
enron_data.to_csv("enron_emails_with_emotions.csv", index=False)
|
|
|
22 |
"neutral"]
|
23 |
|
24 |
# Function to classify emotions in batches
|
25 |
+
def classify_emotions_in_batches(texts, batch_size=32):
|
26 |
results = []
|
27 |
start_time = time.time()
|
28 |
for i in range(0, len(texts), batch_size):
|
|
|
53 |
# Apply emotion classification to the email content
|
54 |
with st.spinner('Running inference...'):
|
55 |
email_texts = enron_data['body'].tolist()
|
56 |
+
enron_data['emotion'] = classify_emotions_in_batches(email_texts, batch_size=32)
|
57 |
|
58 |
# Save the results to a CSV file
|
59 |
enron_data.to_csv("enron_emails_with_emotions.csv", index=False)
|