import pandas as pd import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch from datasets import load_dataset # Load the model and tokenizer model_name = "modelSamLowe/roberta-base-go_emotions" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Define the emotion labels (based on the GoEmotions dataset) emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"] # Function to classify emotion def classify_emotion(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) logits = outputs.logits predicted_class_id = torch.argmax(logits, dim=-1).item() return emotion_labels[predicted_class_id] # Streamlit interface st.title("Enron Emails Emotion Analysis") # Button to run the inference script if st.button("Run Inference"): # Load the Enron dataset with st.spinner('Loading dataset...'): dataset = load_dataset("Hellisotherpeople/enron_emails_parsed") enron_data = pd.DataFrame(dataset['train']) # Apply emotion classification to the email content with st.spinner('Running inference...'): enron_data['emotion'] = enron_data['body'].apply(classify_emotion) # Save the results to a CSV file enron_data.to_csv("enron_emails_with_emotions.csv", index=False) st.success("Inference completed and results saved!") # Check if the results file exists and load it try: enron_data = pd.read_csv("enron_emails_with_emotions.csv") # Dropdown for selecting an emotion selected_emotion = st.selectbox("Select Emotion", emotion_labels) # Filter emails based on the selected emotion filtered_emails = enron_data[enron_data['emotion'] == selected_emotion].head(10) # Display the filtered emails in a table if not filtered_emails.empty: st.write("Top 10 emails with emotion:", selected_emotion) st.table(filtered_emails[['From', 'To', 'body', 'emotion']]) else: st.write("No emails found with the selected emotion.") except FileNotFoundError: st.warning("Run inference first by clicking the 'Run Inference' button.")