Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow import keras
|
6 |
+
|
7 |
+
# Load the saved model
|
8 |
+
loaded_model = keras.models.load_model('tuned_model_classic.h5')
|
9 |
+
|
10 |
+
# Define the class labels (you can customize these according to your problem)
|
11 |
+
class_labels = ['Stroke', 'Non-Stroke']
|
12 |
+
|
13 |
+
# Streamlit App
|
14 |
+
st.title('Image Classifier')
|
15 |
+
st.write('Upload an image to classify')
|
16 |
+
|
17 |
+
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
18 |
+
|
19 |
+
if uploaded_image is not None:
|
20 |
+
# Read the image and preprocess it
|
21 |
+
image = Image.open(uploaded_image)
|
22 |
+
image = image.convert('RGB')
|
23 |
+
image = image.resize((150, 150)) # Resize to match the model's input shape
|
24 |
+
image = np.array(image) # Convert PIL image to numpy array
|
25 |
+
image = image / 255.0 # Normalize pixel values (similar to how you did in the model training)
|
26 |
+
|
27 |
+
# Make prediction using the loaded model
|
28 |
+
prediction = loaded_model.predict(np.expand_dims(image, axis=0))[0]
|
29 |
+
predicted_class_index = np.argmax(prediction)
|
30 |
+
predicted_class = class_labels[predicted_class_index]
|
31 |
+
confidence = prediction[predicted_class_index]
|
32 |
+
|
33 |
+
# Display the uploaded image and the prediction
|
34 |
+
st.image(image, caption=f'Uploaded Image', use_column_width=True)
|
35 |
+
|
36 |
+
# Check if the predicted class is "Non-Stroke" and the confidence is high (you can adjust the threshold)
|
37 |
+
if predicted_class == 'Non-Stroke' and confidence > 0.8:
|
38 |
+
st.write(f'Predicted Class: Uncertain (Possibly both Stroke and Non-Stroke) (Confidence: {confidence:.2f})')
|
39 |
+
else:
|
40 |
+
st.write(f'Predicted Class: {predicted_class} (Confidence: {confidence:.2f})')
|