Spaces:
Runtime error
Runtime error
Upload the space
Browse files- README.md +17 -6
- app.py +322 -0
- requirements.txt +8 -0
README.md
CHANGED
|
@@ -1,12 +1,23 @@
|
|
| 1 |
---
|
| 2 |
-
title: Image
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Image-to-Image SDXL Turbo (any size)
|
| 3 |
+
emoji: ↕️
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
tags:
|
| 7 |
+
- Image-to-Image
|
| 8 |
+
- Image-2-Image
|
| 9 |
+
- Img-to-Img
|
| 10 |
+
- Img-2-Img
|
| 11 |
+
- SDXL
|
| 12 |
+
- Stable Diffusion
|
| 13 |
+
- language models
|
| 14 |
+
- LLMs
|
| 15 |
sdk: gradio
|
| 16 |
+
sdk_version: 4.22.0
|
| 17 |
app_file: app.py
|
| 18 |
pinned: false
|
| 19 |
+
license: mit
|
| 20 |
+
short_description: Modifies the render of your image, at any resolution, freely
|
| 21 |
---
|
| 22 |
|
| 23 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import AutoPipelineForImage2Image
|
| 2 |
+
from PIL import Image, ImageFilter
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
import time
|
| 7 |
+
import math
|
| 8 |
+
import random
|
| 9 |
+
import imageio
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
max_64_bit_int = 2**63 - 1
|
| 13 |
+
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
floatType = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 16 |
+
variant = "fp16" if torch.cuda.is_available() else None
|
| 17 |
+
pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype = floatType, variant = variant)
|
| 18 |
+
pipe = pipe.to(device)
|
| 19 |
+
|
| 20 |
+
def update_seed(is_randomize_seed, seed):
|
| 21 |
+
if is_randomize_seed:
|
| 22 |
+
return random.randint(0, max_64_bit_int)
|
| 23 |
+
return seed
|
| 24 |
+
|
| 25 |
+
def toggle_debug(is_debug_mode):
|
| 26 |
+
if is_debug_mode:
|
| 27 |
+
return [gr.update(visible = True)]
|
| 28 |
+
return [gr.update(visible = False)]
|
| 29 |
+
|
| 30 |
+
def check(
|
| 31 |
+
source_img,
|
| 32 |
+
prompt,
|
| 33 |
+
negative_prompt,
|
| 34 |
+
num_inference_steps,
|
| 35 |
+
guidance_scale,
|
| 36 |
+
image_guidance_scale,
|
| 37 |
+
strength,
|
| 38 |
+
denoising_steps,
|
| 39 |
+
seed,
|
| 40 |
+
debug_mode,
|
| 41 |
+
progress = gr.Progress()
|
| 42 |
+
):
|
| 43 |
+
if source_img is None:
|
| 44 |
+
raise gr.Error("Please provide an image.")
|
| 45 |
+
|
| 46 |
+
if prompt is None or prompt == "":
|
| 47 |
+
raise gr.Error("Please provide a prompt input.")
|
| 48 |
+
|
| 49 |
+
def inpaint(
|
| 50 |
+
source_img,
|
| 51 |
+
prompt,
|
| 52 |
+
negative_prompt,
|
| 53 |
+
num_inference_steps,
|
| 54 |
+
guidance_scale,
|
| 55 |
+
image_guidance_scale,
|
| 56 |
+
strength,
|
| 57 |
+
denoising_steps,
|
| 58 |
+
seed,
|
| 59 |
+
debug_mode,
|
| 60 |
+
progress = gr.Progress()
|
| 61 |
+
):
|
| 62 |
+
check(
|
| 63 |
+
source_img,
|
| 64 |
+
prompt,
|
| 65 |
+
negative_prompt,
|
| 66 |
+
num_inference_steps,
|
| 67 |
+
guidance_scale,
|
| 68 |
+
image_guidance_scale,
|
| 69 |
+
strength,
|
| 70 |
+
denoising_steps,
|
| 71 |
+
seed,
|
| 72 |
+
debug_mode
|
| 73 |
+
)
|
| 74 |
+
start = time.time()
|
| 75 |
+
progress(0, desc = "Preparing data...")
|
| 76 |
+
|
| 77 |
+
if negative_prompt is None:
|
| 78 |
+
negative_prompt = ""
|
| 79 |
+
|
| 80 |
+
if num_inference_steps is None:
|
| 81 |
+
num_inference_steps = 25
|
| 82 |
+
|
| 83 |
+
if guidance_scale is None:
|
| 84 |
+
guidance_scale = 7
|
| 85 |
+
|
| 86 |
+
if image_guidance_scale is None:
|
| 87 |
+
image_guidance_scale = 1.1
|
| 88 |
+
|
| 89 |
+
if strength is None:
|
| 90 |
+
strength = 0.5
|
| 91 |
+
|
| 92 |
+
if denoising_steps is None:
|
| 93 |
+
denoising_steps = 1000
|
| 94 |
+
|
| 95 |
+
if seed is None:
|
| 96 |
+
seed = random.randint(0, max_64_bit_int)
|
| 97 |
+
|
| 98 |
+
random.seed(seed)
|
| 99 |
+
torch.manual_seed(seed)
|
| 100 |
+
|
| 101 |
+
input_image = source_img.convert("RGB")
|
| 102 |
+
|
| 103 |
+
original_height, original_width, original_channel = np.array(input_image).shape
|
| 104 |
+
output_width = original_width
|
| 105 |
+
output_height = original_height
|
| 106 |
+
|
| 107 |
+
# Limited to 1 million pixels
|
| 108 |
+
if 1024 * 1024 < output_width * output_height:
|
| 109 |
+
factor = ((1024 * 1024) / (output_width * output_height))**0.5
|
| 110 |
+
process_width = math.floor(output_width * factor)
|
| 111 |
+
process_height = math.floor(output_height * factor)
|
| 112 |
+
|
| 113 |
+
limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
|
| 114 |
+
else:
|
| 115 |
+
process_width = output_width
|
| 116 |
+
process_height = output_height
|
| 117 |
+
|
| 118 |
+
limitation = "";
|
| 119 |
+
|
| 120 |
+
# Width and height must be multiple of 8
|
| 121 |
+
if (process_width % 8) != 0 or (process_height % 8) != 0:
|
| 122 |
+
if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
|
| 123 |
+
process_width = process_width - (process_width % 8) + 8
|
| 124 |
+
process_height = process_height - (process_height % 8) + 8
|
| 125 |
+
elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
|
| 126 |
+
process_width = process_width - (process_width % 8) + 8
|
| 127 |
+
process_height = process_height - (process_height % 8)
|
| 128 |
+
elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
|
| 129 |
+
process_width = process_width - (process_width % 8)
|
| 130 |
+
process_height = process_height - (process_height % 8) + 8
|
| 131 |
+
else:
|
| 132 |
+
process_width = process_width - (process_width % 8)
|
| 133 |
+
process_height = process_height - (process_height % 8)
|
| 134 |
+
|
| 135 |
+
progress(None, desc = "Processing...")
|
| 136 |
+
output_image = pipe(
|
| 137 |
+
seeds = [seed],
|
| 138 |
+
width = process_width,
|
| 139 |
+
height = process_height,
|
| 140 |
+
prompt = prompt,
|
| 141 |
+
negative_prompt = negative_prompt,
|
| 142 |
+
image = input_image,
|
| 143 |
+
num_inference_steps = num_inference_steps,
|
| 144 |
+
guidance_scale = guidance_scale,
|
| 145 |
+
image_guidance_scale = image_guidance_scale,
|
| 146 |
+
strength = strength,
|
| 147 |
+
denoising_steps = denoising_steps,
|
| 148 |
+
show_progress_bar = True
|
| 149 |
+
).images[0]
|
| 150 |
+
|
| 151 |
+
if limitation != "":
|
| 152 |
+
output_image = output_image.resize((output_width, output_height))
|
| 153 |
+
|
| 154 |
+
if debug_mode == False:
|
| 155 |
+
input_image = None
|
| 156 |
+
|
| 157 |
+
end = time.time()
|
| 158 |
+
secondes = int(end - start)
|
| 159 |
+
minutes = secondes // 60
|
| 160 |
+
secondes = secondes - (minutes * 60)
|
| 161 |
+
hours = minutes // 60
|
| 162 |
+
minutes = minutes - (hours * 60)
|
| 163 |
+
return [
|
| 164 |
+
output_image,
|
| 165 |
+
"Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec." + limitation,
|
| 166 |
+
input_image
|
| 167 |
+
]
|
| 168 |
+
|
| 169 |
+
with gr.Blocks() as interface:
|
| 170 |
+
gr.Markdown(
|
| 171 |
+
"""
|
| 172 |
+
<p style="text-align: center;"><b><big><big><big>Image-to-Image</big></big></big></b></p>
|
| 173 |
+
<p style="text-align: center;">Modifies the global render of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p>
|
| 174 |
+
<br/>
|
| 175 |
+
<br/>
|
| 176 |
+
🚀 Powered by <i>SDXL Turbo</i> artificial intellingence. For illustration purpose, not information purpose. The new content is not based on real information but imagination.
|
| 177 |
+
<br/>
|
| 178 |
+
<ul>
|
| 179 |
+
<li>To change the <b>view angle</b> of your image, I recommend to use <i>Zero123</i>,</li>
|
| 180 |
+
<li>To <b>upscale</b> your image, I recommend to use <i>Ilaria Upscaler</i>,</li>
|
| 181 |
+
<li>To change one <b>detail</b> on your image, I recommend to use <i>Inpaint SDXL</i>,</li>
|
| 182 |
+
<li>If you need to enlarge the <b>viewpoint</b> of your image, I recommend you to use <i>Uncrop</i>,</li>
|
| 183 |
+
<li>To remove the <b>background</b> of your image, I recommend to use <i>BRIA</i>,</li>
|
| 184 |
+
<li>To make a <b>tile</b> of your image, I recommend to use <i>Make My Image Tile</i>,</li>
|
| 185 |
+
<li>To modify <b>anything else</b> on your image, I recommend to use <i>Instruct Pix2Pix</i>.</li>
|
| 186 |
+
</ul>
|
| 187 |
+
<br/>
|
| 188 |
+
🐌 Slow process... ~1 hour.<br>You can duplicate this space on a free account, it works on CPU and should also run on CUDA.<br/>
|
| 189 |
+
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Image-to-Image?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
|
| 190 |
+
<br/>
|
| 191 |
+
⚖️ You can use, modify and share the generated images but not for commercial uses.
|
| 192 |
+
|
| 193 |
+
"""
|
| 194 |
+
)
|
| 195 |
+
with gr.Column():
|
| 196 |
+
source_img = gr.Image(label = "Your image", sources = ["upload", "webcam", "clipboard"], type = "pil")
|
| 197 |
+
prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image")
|
| 198 |
+
strength = gr.Slider(value = 0.5, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original image, higher=follow the prompt")
|
| 199 |
+
with gr.Accordion("Advanced options", open = False):
|
| 200 |
+
negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = "Ugly, malformed, noise, blur, watermark")
|
| 201 |
+
num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
|
| 202 |
+
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
|
| 203 |
+
image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
|
| 204 |
+
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
|
| 205 |
+
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
|
| 206 |
+
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
|
| 207 |
+
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
|
| 208 |
+
|
| 209 |
+
submit = gr.Button("Redraw", variant = "primary")
|
| 210 |
+
|
| 211 |
+
redrawn_image = gr.Image(label = "Redrawn image")
|
| 212 |
+
information = gr.Label(label = "Information")
|
| 213 |
+
original_image = gr.Image(label = "Original image", visible = False)
|
| 214 |
+
|
| 215 |
+
submit.click(update_seed, inputs = [
|
| 216 |
+
randomize_seed, seed
|
| 217 |
+
], outputs = [
|
| 218 |
+
seed
|
| 219 |
+
], queue = False, show_progress = False).then(toggle_debug, debug_mode, [
|
| 220 |
+
original_image
|
| 221 |
+
], queue = False, show_progress = False).then(check, inputs = [
|
| 222 |
+
source_img,
|
| 223 |
+
prompt,
|
| 224 |
+
negative_prompt,
|
| 225 |
+
num_inference_steps,
|
| 226 |
+
guidance_scale,
|
| 227 |
+
image_guidance_scale,
|
| 228 |
+
strength,
|
| 229 |
+
denoising_steps,
|
| 230 |
+
seed,
|
| 231 |
+
debug_mode
|
| 232 |
+
], outputs = [], queue = False, show_progress = False).success(inpaint, inputs = [
|
| 233 |
+
source_img,
|
| 234 |
+
prompt,
|
| 235 |
+
negative_prompt,
|
| 236 |
+
num_inference_steps,
|
| 237 |
+
guidance_scale,
|
| 238 |
+
image_guidance_scale,
|
| 239 |
+
strength,
|
| 240 |
+
denoising_steps,
|
| 241 |
+
seed,
|
| 242 |
+
debug_mode
|
| 243 |
+
], outputs = [
|
| 244 |
+
redrawn_image,
|
| 245 |
+
information,
|
| 246 |
+
original_image
|
| 247 |
+
], scroll_to_output = True)
|
| 248 |
+
|
| 249 |
+
gr.Examples(
|
| 250 |
+
inputs = [
|
| 251 |
+
source_img,
|
| 252 |
+
prompt,
|
| 253 |
+
negative_prompt,
|
| 254 |
+
num_inference_steps,
|
| 255 |
+
guidance_scale,
|
| 256 |
+
image_guidance_scale,
|
| 257 |
+
strength,
|
| 258 |
+
denoising_steps,
|
| 259 |
+
randomize_seed,
|
| 260 |
+
seed,
|
| 261 |
+
debug_mode
|
| 262 |
+
],
|
| 263 |
+
outputs = [
|
| 264 |
+
redrawn_image,
|
| 265 |
+
information,
|
| 266 |
+
original_image
|
| 267 |
+
],
|
| 268 |
+
examples = [
|
| 269 |
+
[
|
| 270 |
+
"./Examples/Example1.png",
|
| 271 |
+
"Drawn image, line art, illustration",
|
| 272 |
+
"3d, photo, realistic, noise, blur, watermark",
|
| 273 |
+
25,
|
| 274 |
+
7,
|
| 275 |
+
1.1,
|
| 276 |
+
0.8,
|
| 277 |
+
1000,
|
| 278 |
+
True,
|
| 279 |
+
42,
|
| 280 |
+
False
|
| 281 |
+
],
|
| 282 |
+
],
|
| 283 |
+
cache_examples = False,
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
gr.Markdown(
|
| 287 |
+
"""
|
| 288 |
+
## How to prompt your image
|
| 289 |
+
|
| 290 |
+
To easily read your prompt, start with the subject, then describ the pose or action, then secondary elements, then the background, then the graphical style, then the image quality:
|
| 291 |
+
```
|
| 292 |
+
A Vietnamese woman, red clothes, walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
|
| 293 |
+
```
|
| 294 |
+
|
| 295 |
+
You can use round brackets to increase the importance of a part:
|
| 296 |
+
```
|
| 297 |
+
A Vietnamese woman, (red clothes), walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
|
| 298 |
+
```
|
| 299 |
+
|
| 300 |
+
You can use several levels of round brackets to even more increase the importance of a part:
|
| 301 |
+
```
|
| 302 |
+
A Vietnamese woman, ((red clothes)), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
|
| 303 |
+
```
|
| 304 |
+
|
| 305 |
+
You can use number instead of several round brackets:
|
| 306 |
+
```
|
| 307 |
+
A Vietnamese woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
|
| 308 |
+
```
|
| 309 |
+
|
| 310 |
+
You can do the same thing with square brackets to decrease the importance of a part:
|
| 311 |
+
```
|
| 312 |
+
A [Vietnamese] woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
|
| 313 |
+
```
|
| 314 |
+
|
| 315 |
+
To easily read your negative prompt, organize it the same way as your prompt (not important for the AI):
|
| 316 |
+
```
|
| 317 |
+
man, boy, hat, running, tree, bicycle, forest, drawing, painting, cartoon, 3d, monochrome, blurry, noisy, bokeh
|
| 318 |
+
```
|
| 319 |
+
"""
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
interface.queue().launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torchvision
|
| 2 |
+
diffusers
|
| 3 |
+
transformers
|
| 4 |
+
accelerate
|
| 5 |
+
ftfy
|
| 6 |
+
scipy
|
| 7 |
+
imageio
|
| 8 |
+
invisible_watermark
|