Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update custom_pipeline.py
Browse files- custom_pipeline.py +9 -66
 
    	
        custom_pipeline.py
    CHANGED
    
    | 
         @@ -44,7 +44,6 @@ from diffusers.utils.torch_utils import randn_tensor 
     | 
|
| 44 | 
         
             
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
         
     | 
| 45 | 
         
             
            from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
         
     | 
| 46 | 
         | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
             
            if is_invisible_watermark_available():
         
     | 
| 49 | 
         
             
                from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
         
     | 
| 50 | 
         | 
| 
         @@ -88,7 +87,6 @@ EXAMPLE_DOC_STRING = """ 
     | 
|
| 88 | 
         
             
                    ```
         
     | 
| 89 | 
         
             
            """
         
     | 
| 90 | 
         | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
             
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
         
     | 
| 93 | 
         
             
            def retrieve_latents(
         
     | 
| 94 | 
         
             
                encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
         
     | 
| 
         @@ -773,7 +771,7 @@ class CosStableDiffusionXLInstructPix2PixPipeline( 
     | 
|
| 773 | 
         
             
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         
     | 
| 774 | 
         
             
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         
     | 
| 775 | 
         
             
                    # corresponds to doing no classifier free guidance.
         
     | 
| 776 | 
         
            -
                    do_classifier_free_guidance = guidance_scale >  
     | 
| 777 | 
         | 
| 778 | 
         
             
                    # 3. Encode input prompt
         
     | 
| 779 | 
         
             
                    text_encoder_lora_scale = (
         
     | 
| 
         @@ -815,9 +813,7 @@ class CosStableDiffusionXLInstructPix2PixPipeline( 
     | 
|
| 815 | 
         
             
                        device,
         
     | 
| 816 | 
         
             
                        do_classifier_free_guidance,
         
     | 
| 817 | 
         
             
                    )
         
     | 
| 818 | 
         
            -
             
     | 
| 819 | 
         
            -
                    image_latents = image_latents * self.vae.config.scaling_factor
         
     | 
| 820 | 
         
            -
                    
         
     | 
| 821 | 
         
             
                    # 7. Prepare latent variables
         
     | 
| 822 | 
         
             
                    num_channels_latents = self.vae.config.latent_channels
         
     | 
| 823 | 
         
             
                    latents = self.prepare_latents(
         
     | 
| 
         @@ -859,7 +855,8 @@ class CosStableDiffusionXLInstructPix2PixPipeline( 
     | 
|
| 859 | 
         
             
                        dtype=prompt_embeds.dtype,
         
     | 
| 860 | 
         
             
                        text_encoder_projection_dim=text_encoder_projection_dim,
         
     | 
| 861 | 
         
             
                    )
         
     | 
| 862 | 
         
            -
             
     | 
| 
         | 
|
| 863 | 
         
             
                    if do_classifier_free_guidance:
         
     | 
| 864 | 
         
             
                        # The extra concat similar to how it's done in SD InstructPix2Pix.
         
     | 
| 865 | 
         
             
                        prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], dim=0)
         
     | 
| 
         @@ -870,35 +867,19 @@ class CosStableDiffusionXLInstructPix2PixPipeline( 
     | 
|
| 870 | 
         | 
| 871 | 
         
             
                    prompt_embeds = prompt_embeds.to(device)
         
     | 
| 872 | 
         
             
                    add_text_embeds = add_text_embeds.to(device)
         
     | 
| 873 | 
         
            -
                    add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
         
     | 
| 874 | 
         | 
| 875 | 
         
             
                    # 11. Denoising loop
         
     | 
| 876 | 
         
             
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         
     | 
| 877 | 
         
            -
                    if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
         
     | 
| 878 | 
         
            -
                        discrete_timestep_cutoff = int(
         
     | 
| 879 | 
         
            -
                            round(
         
     | 
| 880 | 
         
            -
                                self.scheduler.config.num_train_timesteps
         
     | 
| 881 | 
         
            -
                                - (denoising_end * self.scheduler.config.num_train_timesteps)
         
     | 
| 882 | 
         
            -
                            )
         
     | 
| 883 | 
         
            -
                        )
         
     | 
| 884 | 
         
            -
                        num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
         
     | 
| 885 | 
         
            -
                        timesteps = timesteps[:num_inference_steps]
         
     | 
| 886 | 
         
            -
             
     | 
| 887 | 
         
             
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         
     | 
| 888 | 
         
             
                        for i, t in enumerate(timesteps):
         
     | 
| 889 | 
         
            -
                            #  
     | 
| 890 | 
         
            -
                            # The latents are expanded 3 times because for pix2pix the guidance
         
     | 
| 891 | 
         
            -
                            # is applied for both the text and the input image.
         
     | 
| 892 | 
         
             
                            latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents
         
     | 
| 893 | 
         
            -
             
     | 
| 894 | 
         
            -
                            # concat latents, image_latents in the channel dimension
         
     | 
| 895 | 
         
            -
                            scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         
     | 
| 896 | 
         
            -
                            scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1)
         
     | 
| 897 | 
         | 
| 898 | 
         
             
                            # predict the noise residual
         
     | 
| 899 | 
         
             
                            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
         
     | 
| 900 | 
         
             
                            noise_pred = self.unet(
         
     | 
| 901 | 
         
            -
                                 
     | 
| 902 | 
         
             
                                t,
         
     | 
| 903 | 
         
             
                                encoder_hidden_states=prompt_embeds,
         
     | 
| 904 | 
         
             
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 
         @@ -911,7 +892,7 @@ class CosStableDiffusionXLInstructPix2PixPipeline( 
     | 
|
| 911 | 
         
             
                                noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
         
     | 
| 912 | 
         
             
                                noise_pred = (
         
     | 
| 913 | 
         
             
                                    noise_pred_uncond
         
     | 
| 914 | 
         
            -
                                    + guidance_scale * (noise_pred_text -  
     | 
| 915 | 
         
             
                                    + image_guidance_scale * (noise_pred_image - noise_pred_uncond)
         
     | 
| 916 | 
         
             
                                )
         
     | 
| 917 | 
         | 
| 
         @@ -920,12 +901,7 @@ class CosStableDiffusionXLInstructPix2PixPipeline( 
     | 
|
| 920 | 
         
             
                                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
         
     | 
| 921 | 
         | 
| 922 | 
         
             
                            # compute the previous noisy sample x_t -> x_t-1
         
     | 
| 923 | 
         
            -
                            latents_dtype = latents.dtype
         
     | 
| 924 | 
         
             
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         
     | 
| 925 | 
         
            -
                            if latents.dtype != latents_dtype:
         
     | 
| 926 | 
         
            -
                                if torch.backends.mps.is_available():
         
     | 
| 927 | 
         
            -
                                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         
     | 
| 928 | 
         
            -
                                    latents = latents.to(latents_dtype)
         
     | 
| 929 | 
         | 
| 930 | 
         
             
                            # call the callback, if provided
         
     | 
| 931 | 
         
             
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         
     | 
| 
         @@ -934,41 +910,8 @@ class CosStableDiffusionXLInstructPix2PixPipeline( 
     | 
|
| 934 | 
         
             
                                    step_idx = i // getattr(self.scheduler, "order", 1)
         
     | 
| 935 | 
         
             
                                    callback(step_idx, t, latents)
         
     | 
| 936 | 
         | 
| 937 | 
         
            -
                            if XLA_AVAILABLE:
         
     | 
| 938 | 
         
            -
                                xm.mark_step()
         
     | 
| 939 | 
         
            -
             
     | 
| 940 | 
         
             
                    if not output_type == "latent":
         
     | 
| 941 | 
         
            -
                         
     | 
| 942 | 
         
            -
                        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
         
     | 
| 943 | 
         
            -
             
     | 
| 944 | 
         
            -
                        if needs_upcasting:
         
     | 
| 945 | 
         
            -
                            self.upcast_vae()
         
     | 
| 946 | 
         
            -
                            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         
     | 
| 947 | 
         
            -
                        elif latents.dtype != self.vae.dtype:
         
     | 
| 948 | 
         
            -
                            if torch.backends.mps.is_available():
         
     | 
| 949 | 
         
            -
                                # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         
     | 
| 950 | 
         
            -
                                self.vae = self.vae.to(latents.dtype)
         
     | 
| 951 | 
         
            -
             
     | 
| 952 | 
         
            -
                        # unscale/denormalize the latents
         
     | 
| 953 | 
         
            -
                        # denormalize with the mean and std if available and not None
         
     | 
| 954 | 
         
            -
                        has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
         
     | 
| 955 | 
         
            -
                        has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
         
     | 
| 956 | 
         
            -
                        if has_latents_mean and has_latents_std:
         
     | 
| 957 | 
         
            -
                            latents_mean = (
         
     | 
| 958 | 
         
            -
                                torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
         
     | 
| 959 | 
         
            -
                            )
         
     | 
| 960 | 
         
            -
                            latents_std = (
         
     | 
| 961 | 
         
            -
                                torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
         
     | 
| 962 | 
         
            -
                            )
         
     | 
| 963 | 
         
            -
                            latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
         
     | 
| 964 | 
         
            -
                        else:
         
     | 
| 965 | 
         
            -
                            latents = latents / self.vae.config.scaling_factor
         
     | 
| 966 | 
         
            -
             
     | 
| 967 | 
         
            -
                        image = self.vae.decode(latents, return_dict=False)[0]
         
     | 
| 968 | 
         
            -
             
     | 
| 969 | 
         
            -
                        # cast back to fp16 if needed
         
     | 
| 970 | 
         
            -
                        if needs_upcasting:
         
     | 
| 971 | 
         
            -
                            self.vae.to(dtype=torch.float16)
         
     | 
| 972 | 
         
             
                    else:
         
     | 
| 973 | 
         
             
                        return StableDiffusionXLPipelineOutput(images=latents)
         
     | 
| 974 | 
         | 
| 
         | 
|
| 44 | 
         
             
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
         
     | 
| 45 | 
         
             
            from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
         
     | 
| 46 | 
         | 
| 
         | 
|
| 47 | 
         
             
            if is_invisible_watermark_available():
         
     | 
| 48 | 
         
             
                from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
         
     | 
| 49 | 
         | 
| 
         | 
|
| 87 | 
         
             
                    ```
         
     | 
| 88 | 
         
             
            """
         
     | 
| 89 | 
         | 
| 
         | 
|
| 90 | 
         
             
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
         
     | 
| 91 | 
         
             
            def retrieve_latents(
         
     | 
| 92 | 
         
             
                encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
         
     | 
| 
         | 
|
| 771 | 
         
             
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         
     | 
| 772 | 
         
             
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         
     | 
| 773 | 
         
             
                    # corresponds to doing no classifier free guidance.
         
     | 
| 774 | 
         
            +
                    do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0
         
     | 
| 775 | 
         | 
| 776 | 
         
             
                    # 3. Encode input prompt
         
     | 
| 777 | 
         
             
                    text_encoder_lora_scale = (
         
     | 
| 
         | 
|
| 813 | 
         
             
                        device,
         
     | 
| 814 | 
         
             
                        do_classifier_free_guidance,
         
     | 
| 815 | 
         
             
                    )
         
     | 
| 816 | 
         
            +
             
     | 
| 
         | 
|
| 
         | 
|
| 817 | 
         
             
                    # 7. Prepare latent variables
         
     | 
| 818 | 
         
             
                    num_channels_latents = self.vae.config.latent_channels
         
     | 
| 819 | 
         
             
                    latents = self.prepare_latents(
         
     | 
| 
         | 
|
| 855 | 
         
             
                        dtype=prompt_embeds.dtype,
         
     | 
| 856 | 
         
             
                        text_encoder_projection_dim=text_encoder_projection_dim,
         
     | 
| 857 | 
         
             
                    )
         
     | 
| 858 | 
         
            +
                    add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
         
     | 
| 859 | 
         
            +
                    
         
     | 
| 860 | 
         
             
                    if do_classifier_free_guidance:
         
     | 
| 861 | 
         
             
                        # The extra concat similar to how it's done in SD InstructPix2Pix.
         
     | 
| 862 | 
         
             
                        prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], dim=0)
         
     | 
| 
         | 
|
| 867 | 
         | 
| 868 | 
         
             
                    prompt_embeds = prompt_embeds.to(device)
         
     | 
| 869 | 
         
             
                    add_text_embeds = add_text_embeds.to(device)
         
     | 
| 
         | 
|
| 870 | 
         | 
| 871 | 
         
             
                    # 11. Denoising loop
         
     | 
| 872 | 
         
             
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 873 | 
         
             
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         
     | 
| 874 | 
         
             
                        for i, t in enumerate(timesteps):
         
     | 
| 875 | 
         
            +
                            # expand the latents if we are doing classifier free guidance
         
     | 
| 
         | 
|
| 
         | 
|
| 876 | 
         
             
                            latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents
         
     | 
| 877 | 
         
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 878 | 
         | 
| 879 | 
         
             
                            # predict the noise residual
         
     | 
| 880 | 
         
             
                            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
         
     | 
| 881 | 
         
             
                            noise_pred = self.unet(
         
     | 
| 882 | 
         
            +
                                torch.cat([latent_model_input, image_latents], dim=1),
         
     | 
| 883 | 
         
             
                                t,
         
     | 
| 884 | 
         
             
                                encoder_hidden_states=prompt_embeds,
         
     | 
| 885 | 
         
             
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 
         | 
|
| 892 | 
         
             
                                noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
         
     | 
| 893 | 
         
             
                                noise_pred = (
         
     | 
| 894 | 
         
             
                                    noise_pred_uncond
         
     | 
| 895 | 
         
            +
                                    + guidance_scale * (noise_pred_text - noise_pred_uncond)
         
     | 
| 896 | 
         
             
                                    + image_guidance_scale * (noise_pred_image - noise_pred_uncond)
         
     | 
| 897 | 
         
             
                                )
         
     | 
| 898 | 
         | 
| 
         | 
|
| 901 | 
         
             
                                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
         
     | 
| 902 | 
         | 
| 903 | 
         
             
                            # compute the previous noisy sample x_t -> x_t-1
         
     | 
| 
         | 
|
| 904 | 
         
             
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 905 | 
         | 
| 906 | 
         
             
                            # call the callback, if provided
         
     | 
| 907 | 
         
             
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         
     | 
| 
         | 
|
| 910 | 
         
             
                                    step_idx = i // getattr(self.scheduler, "order", 1)
         
     | 
| 911 | 
         
             
                                    callback(step_idx, t, latents)
         
     | 
| 912 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 913 | 
         
             
                    if not output_type == "latent":
         
     | 
| 914 | 
         
            +
                        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 915 | 
         
             
                    else:
         
     | 
| 916 | 
         
             
                        return StableDiffusionXLPipelineOutput(images=latents)
         
     | 
| 917 | 
         |