import gradio as gr from transformers import pipeline # Load the model model_name = "cirimus/modernbert-base-go-emotions" classifier = pipeline("text-classification", model=model_name, top_k=None) def classify_text(text): predictions = classifier(text) return {pred["label"]: pred["score"] for pred in predictions[0]} # Create the Gradio interface interface = gr.Interface( fn=classify_text, inputs=gr.Textbox(lines=2, placeholder="Enter text to analyze emotions..."), outputs=gr.Label(num_top_classes=5), title="Emotion Classifier", description="Enter a sentence to see its associated emotions and confidence scores.", ) # Launch the app interface.launch()