Spaces:
Configuration error
Configuration error
| #!/usr/bin/env python | |
| # -*- coding: utf-8 -*- | |
| """Utility functions""" | |
| from __future__ import annotations | |
| import scipy.ndimage | |
| import scipy.sparse | |
| import numpy as np | |
| import numba | |
| from numpy.lib.stride_tricks import as_strided | |
| from .._cache import cache | |
| from .exceptions import ParameterError | |
| from .deprecation import Deprecated | |
| from numpy.typing import ArrayLike, DTypeLike | |
| from typing import ( | |
| Any, | |
| Callable, | |
| Iterable, | |
| List, | |
| Dict, | |
| Optional, | |
| Sequence, | |
| Tuple, | |
| TypeVar, | |
| Union, | |
| overload, | |
| ) | |
| from typing_extensions import Literal | |
| from .._typing import _SequenceLike, _FloatLike_co, _ComplexLike_co | |
| # Constrain STFT block sizes to 256 KB | |
| MAX_MEM_BLOCK = 2**8 * 2**10 | |
| __all__ = [ | |
| "MAX_MEM_BLOCK", | |
| "frame", | |
| "pad_center", | |
| "expand_to", | |
| "fix_length", | |
| "valid_audio", | |
| "valid_int", | |
| "is_positive_int", | |
| "valid_intervals", | |
| "fix_frames", | |
| "axis_sort", | |
| "localmax", | |
| "localmin", | |
| "normalize", | |
| "peak_pick", | |
| "sparsify_rows", | |
| "shear", | |
| "stack", | |
| "fill_off_diagonal", | |
| "index_to_slice", | |
| "sync", | |
| "softmask", | |
| "buf_to_float", | |
| "tiny", | |
| "cyclic_gradient", | |
| "dtype_r2c", | |
| "dtype_c2r", | |
| "count_unique", | |
| "is_unique", | |
| "abs2", | |
| "phasor", | |
| ] | |
| def frame( | |
| x: np.ndarray, | |
| *, | |
| frame_length: int, | |
| hop_length: int, | |
| axis: int = -1, | |
| writeable: bool = False, | |
| subok: bool = False, | |
| ) -> np.ndarray: | |
| """Slice a data array into (overlapping) frames. | |
| This implementation uses low-level stride manipulation to avoid | |
| making a copy of the data. The resulting frame representation | |
| is a new view of the same input data. | |
| For example, a one-dimensional input ``x = [0, 1, 2, 3, 4, 5, 6]`` | |
| can be framed with frame length 3 and hop length 2 in two ways. | |
| The first (``axis=-1``), results in the array ``x_frames``:: | |
| [[0, 2, 4], | |
| [1, 3, 5], | |
| [2, 4, 6]] | |
| where each column ``x_frames[:, i]`` contains a contiguous slice of | |
| the input ``x[i * hop_length : i * hop_length + frame_length]``. | |
| The second way (``axis=0``) results in the array ``x_frames``:: | |
| [[0, 1, 2], | |
| [2, 3, 4], | |
| [4, 5, 6]] | |
| where each row ``x_frames[i]`` contains a contiguous slice of the input. | |
| This generalizes to higher dimensional inputs, as shown in the examples below. | |
| In general, the framing operation increments by 1 the number of dimensions, | |
| adding a new "frame axis" either before the framing axis (if ``axis < 0``) | |
| or after the framing axis (if ``axis >= 0``). | |
| Parameters | |
| ---------- | |
| x : np.ndarray | |
| Array to frame | |
| frame_length : int > 0 [scalar] | |
| Length of the frame | |
| hop_length : int > 0 [scalar] | |
| Number of steps to advance between frames | |
| axis : int | |
| The axis along which to frame. | |
| writeable : bool | |
| If ``True``, then the framed view of ``x`` is read-only. | |
| If ``False``, then the framed view is read-write. Note that writing to the framed view | |
| will also write to the input array ``x`` in this case. | |
| subok : bool | |
| If True, sub-classes will be passed-through, otherwise the returned array will be | |
| forced to be a base-class array (default). | |
| Returns | |
| ------- | |
| x_frames : np.ndarray [shape=(..., frame_length, N_FRAMES, ...)] | |
| A framed view of ``x``, for example with ``axis=-1`` (framing on the last dimension):: | |
| x_frames[..., j] == x[..., j * hop_length : j * hop_length + frame_length] | |
| If ``axis=0`` (framing on the first dimension), then:: | |
| x_frames[j] = x[j * hop_length : j * hop_length + frame_length] | |
| Raises | |
| ------ | |
| ParameterError | |
| If ``x.shape[axis] < frame_length``, there is not enough data to fill one frame. | |
| If ``hop_length < 1``, frames cannot advance. | |
| See Also | |
| -------- | |
| numpy.lib.stride_tricks.as_strided | |
| Examples | |
| -------- | |
| Extract 2048-sample frames from monophonic signal with a hop of 64 samples per frame | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64) | |
| >>> frames | |
| array([[-1.407e-03, -2.604e-02, ..., -1.795e-05, -8.108e-06], | |
| [-4.461e-04, -3.721e-02, ..., -1.573e-05, -1.652e-05], | |
| ..., | |
| [ 7.960e-02, -2.335e-01, ..., -6.815e-06, 1.266e-05], | |
| [ 9.568e-02, -1.252e-01, ..., 7.397e-06, -1.921e-05]], | |
| dtype=float32) | |
| >>> y.shape | |
| (117601,) | |
| >>> frames.shape | |
| (2048, 1806) | |
| Or frame along the first axis instead of the last: | |
| >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64, axis=0) | |
| >>> frames.shape | |
| (1806, 2048) | |
| Frame a stereo signal: | |
| >>> y, sr = librosa.load(librosa.ex('trumpet', hq=True), mono=False) | |
| >>> y.shape | |
| (2, 117601) | |
| >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64) | |
| (2, 2048, 1806) | |
| Carve an STFT into fixed-length patches of 32 frames with 50% overlap | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> S = np.abs(librosa.stft(y)) | |
| >>> S.shape | |
| (1025, 230) | |
| >>> S_patch = librosa.util.frame(S, frame_length=32, hop_length=16) | |
| >>> S_patch.shape | |
| (1025, 32, 13) | |
| >>> # The first patch contains the first 32 frames of S | |
| >>> np.allclose(S_patch[:, :, 0], S[:, :32]) | |
| True | |
| >>> # The second patch contains frames 16 to 16+32=48, and so on | |
| >>> np.allclose(S_patch[:, :, 1], S[:, 16:48]) | |
| True | |
| """ | |
| # This implementation is derived from numpy.lib.stride_tricks.sliding_window_view (1.20.0) | |
| # https://numpy.org/doc/stable/reference/generated/numpy.lib.stride_tricks.sliding_window_view.html | |
| x = np.array(x, copy=False, subok=subok) | |
| if x.shape[axis] < frame_length: | |
| raise ParameterError( | |
| f"Input is too short (n={x.shape[axis]:d}) for frame_length={frame_length:d}" | |
| ) | |
| if hop_length < 1: | |
| raise ParameterError(f"Invalid hop_length: {hop_length:d}") | |
| # put our new within-frame axis at the end for now | |
| out_strides = x.strides + tuple([x.strides[axis]]) | |
| # Reduce the shape on the framing axis | |
| x_shape_trimmed = list(x.shape) | |
| x_shape_trimmed[axis] -= frame_length - 1 | |
| out_shape = tuple(x_shape_trimmed) + tuple([frame_length]) | |
| xw = as_strided( | |
| x, strides=out_strides, shape=out_shape, subok=subok, writeable=writeable | |
| ) | |
| if axis < 0: | |
| target_axis = axis - 1 | |
| else: | |
| target_axis = axis + 1 | |
| xw = np.moveaxis(xw, -1, target_axis) | |
| # Downsample along the target axis | |
| slices = [slice(None)] * xw.ndim | |
| slices[axis] = slice(0, None, hop_length) | |
| return xw[tuple(slices)] | |
| def valid_audio(y: np.ndarray, *, mono: Union[bool, Deprecated] = Deprecated()) -> bool: | |
| """Determine whether a variable contains valid audio data. | |
| The following conditions must be satisfied: | |
| - ``type(y)`` is ``np.ndarray`` | |
| - ``y.dtype`` is floating-point | |
| - ``y.ndim != 0`` (must have at least one dimension) | |
| - ``np.isfinite(y).all()`` samples must be all finite values | |
| If ``mono`` is specified, then we additionally require | |
| - ``y.ndim == 1`` | |
| Parameters | |
| ---------- | |
| y : np.ndarray | |
| The input data to validate | |
| mono : bool | |
| Whether or not to require monophonic audio | |
| .. warning:: The ``mono`` parameter is deprecated in version 0.9 and will be | |
| removed in 0.10. | |
| Returns | |
| ------- | |
| valid : bool | |
| True if all tests pass | |
| Raises | |
| ------ | |
| ParameterError | |
| In any of the conditions specified above fails | |
| Notes | |
| ----- | |
| This function caches at level 20. | |
| Examples | |
| -------- | |
| >>> # By default, valid_audio allows only mono signals | |
| >>> filepath = librosa.ex('trumpet', hq=True) | |
| >>> y_mono, sr = librosa.load(filepath, mono=True) | |
| >>> y_stereo, _ = librosa.load(filepath, mono=False) | |
| >>> librosa.util.valid_audio(y_mono), librosa.util.valid_audio(y_stereo) | |
| True, False | |
| >>> # To allow stereo signals, set mono=False | |
| >>> librosa.util.valid_audio(y_stereo, mono=False) | |
| True | |
| See Also | |
| -------- | |
| numpy.float32 | |
| """ | |
| if not isinstance(y, np.ndarray): | |
| raise ParameterError("Audio data must be of type numpy.ndarray") | |
| if not np.issubdtype(y.dtype, np.floating): | |
| raise ParameterError("Audio data must be floating-point") | |
| if y.ndim == 0: | |
| raise ParameterError( | |
| f"Audio data must be at least one-dimensional, given y.shape={y.shape}" | |
| ) | |
| if isinstance(mono, Deprecated): | |
| mono = False | |
| if mono and y.ndim != 1: | |
| raise ParameterError( | |
| f"Invalid shape for monophonic audio: ndim={y.ndim:d}, shape={y.shape}" | |
| ) | |
| if not np.isfinite(y).all(): | |
| raise ParameterError("Audio buffer is not finite everywhere") | |
| return True | |
| def valid_int(x: float, *, cast: Optional[Callable[[float], float]] = None) -> int: | |
| """Ensure that an input value is integer-typed. | |
| This is primarily useful for ensuring integrable-valued | |
| array indices. | |
| Parameters | |
| ---------- | |
| x : number | |
| A scalar value to be cast to int | |
| cast : function [optional] | |
| A function to modify ``x`` before casting. | |
| Default: `np.floor` | |
| Returns | |
| ------- | |
| x_int : int | |
| ``x_int = int(cast(x))`` | |
| Raises | |
| ------ | |
| ParameterError | |
| If ``cast`` is provided and is not callable. | |
| """ | |
| if cast is None: | |
| cast = np.floor | |
| if not callable(cast): | |
| raise ParameterError("cast parameter must be callable") | |
| return int(cast(x)) | |
| def is_positive_int(x: float) -> bool: | |
| """Checks that x is a positive integer, i.e. 1 or greater. | |
| Parameters | |
| ---------- | |
| x : number | |
| Returns | |
| ------- | |
| positive : bool | |
| """ | |
| # Check type first to catch None values. | |
| return isinstance(x, (int, np.integer)) and (x > 0) | |
| def valid_intervals(intervals: np.ndarray) -> bool: | |
| """Ensure that an array is a valid representation of time intervals: | |
| - intervals.ndim == 2 | |
| - intervals.shape[1] == 2 | |
| - intervals[i, 0] <= intervals[i, 1] for all i | |
| Parameters | |
| ---------- | |
| intervals : np.ndarray [shape=(n, 2)] | |
| set of time intervals | |
| Returns | |
| ------- | |
| valid : bool | |
| True if ``intervals`` passes validation. | |
| """ | |
| if intervals.ndim != 2 or intervals.shape[-1] != 2: | |
| raise ParameterError("intervals must have shape (n, 2)") | |
| if np.any(intervals[:, 0] > intervals[:, 1]): | |
| raise ParameterError(f"intervals={intervals} must have non-negative durations") | |
| return True | |
| def pad_center( | |
| data: np.ndarray, *, size: int, axis: int = -1, **kwargs: Any | |
| ) -> np.ndarray: | |
| """Pad an array to a target length along a target axis. | |
| This differs from `np.pad` by centering the data prior to padding, | |
| analogous to `str.center` | |
| Examples | |
| -------- | |
| >>> # Generate a vector | |
| >>> data = np.ones(5) | |
| >>> librosa.util.pad_center(data, size=10, mode='constant') | |
| array([ 0., 0., 1., 1., 1., 1., 1., 0., 0., 0.]) | |
| >>> # Pad a matrix along its first dimension | |
| >>> data = np.ones((3, 5)) | |
| >>> librosa.util.pad_center(data, size=7, axis=0) | |
| array([[ 0., 0., 0., 0., 0.], | |
| [ 0., 0., 0., 0., 0.], | |
| [ 1., 1., 1., 1., 1.], | |
| [ 1., 1., 1., 1., 1.], | |
| [ 1., 1., 1., 1., 1.], | |
| [ 0., 0., 0., 0., 0.], | |
| [ 0., 0., 0., 0., 0.]]) | |
| >>> # Or its second dimension | |
| >>> librosa.util.pad_center(data, size=7, axis=1) | |
| array([[ 0., 1., 1., 1., 1., 1., 0.], | |
| [ 0., 1., 1., 1., 1., 1., 0.], | |
| [ 0., 1., 1., 1., 1., 1., 0.]]) | |
| Parameters | |
| ---------- | |
| data : np.ndarray | |
| Vector to be padded and centered | |
| size : int >= len(data) [scalar] | |
| Length to pad ``data`` | |
| axis : int | |
| Axis along which to pad and center the data | |
| **kwargs : additional keyword arguments | |
| arguments passed to `np.pad` | |
| Returns | |
| ------- | |
| data_padded : np.ndarray | |
| ``data`` centered and padded to length ``size`` along the | |
| specified axis | |
| Raises | |
| ------ | |
| ParameterError | |
| If ``size < data.shape[axis]`` | |
| See Also | |
| -------- | |
| numpy.pad | |
| """ | |
| kwargs.setdefault("mode", "constant") | |
| n = data.shape[axis] | |
| lpad = int((size - n) // 2) | |
| lengths = [(0, 0)] * data.ndim | |
| lengths[axis] = (lpad, int(size - n - lpad)) | |
| if lpad < 0: | |
| raise ParameterError( | |
| f"Target size ({size:d}) must be at least input size ({n:d})" | |
| ) | |
| return np.pad(data, lengths, **kwargs) | |
| def expand_to( | |
| x: np.ndarray, *, ndim: int, axes: Union[int, slice, Sequence[int], Sequence[slice]] | |
| ) -> np.ndarray: | |
| """Expand the dimensions of an input array with | |
| Parameters | |
| ---------- | |
| x : np.ndarray | |
| The input array | |
| ndim : int | |
| The number of dimensions to expand to. Must be at least ``x.ndim`` | |
| axes : int or slice | |
| The target axis or axes to preserve from x. | |
| All other axes will have length 1. | |
| Returns | |
| ------- | |
| x_exp : np.ndarray | |
| The expanded version of ``x``, satisfying the following: | |
| ``x_exp[axes] == x`` | |
| ``x_exp.ndim == ndim`` | |
| See Also | |
| -------- | |
| np.expand_dims | |
| Examples | |
| -------- | |
| Expand a 1d array into an (n, 1) shape | |
| >>> x = np.arange(3) | |
| >>> librosa.util.expand_to(x, ndim=2, axes=0) | |
| array([[0], | |
| [1], | |
| [2]]) | |
| Expand a 1d array into a (1, n) shape | |
| >>> librosa.util.expand_to(x, ndim=2, axes=1) | |
| array([[0, 1, 2]]) | |
| Expand a 2d array into (1, n, m, 1) shape | |
| >>> x = np.vander(np.arange(3)) | |
| >>> librosa.util.expand_to(x, ndim=4, axes=[1,2]).shape | |
| (1, 3, 3, 1) | |
| """ | |
| # Force axes into a tuple | |
| axes_tup: Tuple[int] | |
| try: | |
| axes_tup = tuple(axes) # type: ignore | |
| except TypeError: | |
| axes_tup = tuple([axes]) # type: ignore | |
| if len(axes_tup) != x.ndim: | |
| raise ParameterError( | |
| f"Shape mismatch between axes={axes_tup} and input x.shape={x.shape}" | |
| ) | |
| if ndim < x.ndim: | |
| raise ParameterError( | |
| f"Cannot expand x.shape={x.shape} to fewer dimensions ndim={ndim}" | |
| ) | |
| shape: List[int] = [1] * ndim | |
| for i, axi in enumerate(axes_tup): | |
| shape[axi] = x.shape[i] | |
| return x.reshape(shape) | |
| def fix_length( | |
| data: np.ndarray, *, size: int, axis: int = -1, **kwargs: Any | |
| ) -> np.ndarray: | |
| """Fix the length an array ``data`` to exactly ``size`` along a target axis. | |
| If ``data.shape[axis] < n``, pad according to the provided kwargs. | |
| By default, ``data`` is padded with trailing zeros. | |
| Examples | |
| -------- | |
| >>> y = np.arange(7) | |
| >>> # Default: pad with zeros | |
| >>> librosa.util.fix_length(y, size=10) | |
| array([0, 1, 2, 3, 4, 5, 6, 0, 0, 0]) | |
| >>> # Trim to a desired length | |
| >>> librosa.util.fix_length(y, size=5) | |
| array([0, 1, 2, 3, 4]) | |
| >>> # Use edge-padding instead of zeros | |
| >>> librosa.util.fix_length(y, size=10, mode='edge') | |
| array([0, 1, 2, 3, 4, 5, 6, 6, 6, 6]) | |
| Parameters | |
| ---------- | |
| data : np.ndarray | |
| array to be length-adjusted | |
| size : int >= 0 [scalar] | |
| desired length of the array | |
| axis : int, <= data.ndim | |
| axis along which to fix length | |
| **kwargs : additional keyword arguments | |
| Parameters to ``np.pad`` | |
| Returns | |
| ------- | |
| data_fixed : np.ndarray [shape=data.shape] | |
| ``data`` either trimmed or padded to length ``size`` | |
| along the specified axis. | |
| See Also | |
| -------- | |
| numpy.pad | |
| """ | |
| kwargs.setdefault("mode", "constant") | |
| n = data.shape[axis] | |
| if n > size: | |
| slices = [slice(None)] * data.ndim | |
| slices[axis] = slice(0, size) | |
| return data[tuple(slices)] | |
| elif n < size: | |
| lengths = [(0, 0)] * data.ndim | |
| lengths[axis] = (0, size - n) | |
| return np.pad(data, lengths, **kwargs) | |
| return data | |
| def fix_frames( | |
| frames: _SequenceLike[int], | |
| *, | |
| x_min: Optional[int] = 0, | |
| x_max: Optional[int] = None, | |
| pad: bool = True, | |
| ) -> np.ndarray: | |
| """Fix a list of frames to lie within [x_min, x_max] | |
| Examples | |
| -------- | |
| >>> # Generate a list of frame indices | |
| >>> frames = np.arange(0, 1000.0, 50) | |
| >>> frames | |
| array([ 0., 50., 100., 150., 200., 250., 300., 350., | |
| 400., 450., 500., 550., 600., 650., 700., 750., | |
| 800., 850., 900., 950.]) | |
| >>> # Clip to span at most 250 | |
| >>> librosa.util.fix_frames(frames, x_max=250) | |
| array([ 0, 50, 100, 150, 200, 250]) | |
| >>> # Or pad to span up to 2500 | |
| >>> librosa.util.fix_frames(frames, x_max=2500) | |
| array([ 0, 50, 100, 150, 200, 250, 300, 350, 400, | |
| 450, 500, 550, 600, 650, 700, 750, 800, 850, | |
| 900, 950, 2500]) | |
| >>> librosa.util.fix_frames(frames, x_max=2500, pad=False) | |
| array([ 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, | |
| 550, 600, 650, 700, 750, 800, 850, 900, 950]) | |
| >>> # Or starting away from zero | |
| >>> frames = np.arange(200, 500, 33) | |
| >>> frames | |
| array([200, 233, 266, 299, 332, 365, 398, 431, 464, 497]) | |
| >>> librosa.util.fix_frames(frames) | |
| array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497]) | |
| >>> librosa.util.fix_frames(frames, x_max=500) | |
| array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497, | |
| 500]) | |
| Parameters | |
| ---------- | |
| frames : np.ndarray [shape=(n_frames,)] | |
| List of non-negative frame indices | |
| x_min : int >= 0 or None | |
| Minimum allowed frame index | |
| x_max : int >= 0 or None | |
| Maximum allowed frame index | |
| pad : boolean | |
| If ``True``, then ``frames`` is expanded to span the full range | |
| ``[x_min, x_max]`` | |
| Returns | |
| ------- | |
| fixed_frames : np.ndarray [shape=(n_fixed_frames,), dtype=int] | |
| Fixed frame indices, flattened and sorted | |
| Raises | |
| ------ | |
| ParameterError | |
| If ``frames`` contains negative values | |
| """ | |
| frames = np.asarray(frames) | |
| if np.any(frames < 0): | |
| raise ParameterError("Negative frame index detected") | |
| # TODO: this whole function could be made more efficient | |
| if pad and (x_min is not None or x_max is not None): | |
| frames = np.clip(frames, x_min, x_max) | |
| if pad: | |
| pad_data = [] | |
| if x_min is not None: | |
| pad_data.append(x_min) | |
| if x_max is not None: | |
| pad_data.append(x_max) | |
| frames = np.concatenate((np.asarray(pad_data), frames)) | |
| if x_min is not None: | |
| frames = frames[frames >= x_min] | |
| if x_max is not None: | |
| frames = frames[frames <= x_max] | |
| unique: np.ndarray = np.unique(frames).astype(int) | |
| return unique | |
| def axis_sort( | |
| S: np.ndarray, | |
| *, | |
| axis: int = ..., | |
| index: Literal[False] = ..., | |
| value: Optional[Callable[..., Any]] = ..., | |
| ) -> np.ndarray: | |
| ... | |
| def axis_sort( | |
| S: np.ndarray, | |
| *, | |
| axis: int = ..., | |
| index: Literal[True], | |
| value: Optional[Callable[..., Any]] = ..., | |
| ) -> Tuple[np.ndarray, np.ndarray]: | |
| ... | |
| def axis_sort( | |
| S: np.ndarray, | |
| *, | |
| axis: int = -1, | |
| index: bool = False, | |
| value: Optional[Callable[..., Any]] = None, | |
| ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: | |
| """Sort an array along its rows or columns. | |
| Examples | |
| -------- | |
| Visualize NMF output for a spectrogram S | |
| >>> # Sort the columns of W by peak frequency bin | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> S = np.abs(librosa.stft(y)) | |
| >>> W, H = librosa.decompose.decompose(S, n_components=64) | |
| >>> W_sort = librosa.util.axis_sort(W) | |
| Or sort by the lowest frequency bin | |
| >>> W_sort = librosa.util.axis_sort(W, value=np.argmin) | |
| Or sort the rows instead of the columns | |
| >>> W_sort_rows = librosa.util.axis_sort(W, axis=0) | |
| Get the sorting index also, and use it to permute the rows of H | |
| >>> W_sort, idx = librosa.util.axis_sort(W, index=True) | |
| >>> H_sort = H[idx, :] | |
| >>> import matplotlib.pyplot as plt | |
| >>> fig, ax = plt.subplots(nrows=2, ncols=2) | |
| >>> img_w = librosa.display.specshow(librosa.amplitude_to_db(W, ref=np.max), | |
| ... y_axis='log', ax=ax[0, 0]) | |
| >>> ax[0, 0].set(title='W') | |
| >>> ax[0, 0].label_outer() | |
| >>> img_act = librosa.display.specshow(H, x_axis='time', ax=ax[0, 1]) | |
| >>> ax[0, 1].set(title='H') | |
| >>> ax[0, 1].label_outer() | |
| >>> librosa.display.specshow(librosa.amplitude_to_db(W_sort, | |
| ... ref=np.max), | |
| ... y_axis='log', ax=ax[1, 0]) | |
| >>> ax[1, 0].set(title='W sorted') | |
| >>> librosa.display.specshow(H_sort, x_axis='time', ax=ax[1, 1]) | |
| >>> ax[1, 1].set(title='H sorted') | |
| >>> ax[1, 1].label_outer() | |
| >>> fig.colorbar(img_w, ax=ax[:, 0], orientation='horizontal') | |
| >>> fig.colorbar(img_act, ax=ax[:, 1], orientation='horizontal') | |
| Parameters | |
| ---------- | |
| S : np.ndarray [shape=(d, n)] | |
| Array to be sorted | |
| axis : int [scalar] | |
| The axis along which to compute the sorting values | |
| - ``axis=0`` to sort rows by peak column index | |
| - ``axis=1`` to sort columns by peak row index | |
| index : boolean [scalar] | |
| If true, returns the index array as well as the permuted data. | |
| value : function | |
| function to return the index corresponding to the sort order. | |
| Default: `np.argmax`. | |
| Returns | |
| ------- | |
| S_sort : np.ndarray [shape=(d, n)] | |
| ``S`` with the columns or rows permuted in sorting order | |
| idx : np.ndarray (optional) [shape=(d,) or (n,)] | |
| If ``index == True``, the sorting index used to permute ``S``. | |
| Length of ``idx`` corresponds to the selected ``axis``. | |
| Raises | |
| ------ | |
| ParameterError | |
| If ``S`` does not have exactly 2 dimensions (``S.ndim != 2``) | |
| """ | |
| if value is None: | |
| value = np.argmax | |
| if S.ndim != 2: | |
| raise ParameterError("axis_sort is only defined for 2D arrays") | |
| bin_idx = value(S, axis=np.mod(1 - axis, S.ndim)) | |
| idx = np.argsort(bin_idx) | |
| sort_slice = [slice(None)] * S.ndim | |
| sort_slice[axis] = idx # type: ignore | |
| if index: | |
| return S[tuple(sort_slice)], idx | |
| else: | |
| return S[tuple(sort_slice)] | |
| def normalize( | |
| S: np.ndarray, | |
| *, | |
| norm: Optional[float] = np.inf, | |
| axis: Optional[int] = 0, | |
| threshold: Optional[_FloatLike_co] = None, | |
| fill: Optional[bool] = None, | |
| ) -> np.ndarray: | |
| """Normalize an array along a chosen axis. | |
| Given a norm (described below) and a target axis, the input | |
| array is scaled so that:: | |
| norm(S, axis=axis) == 1 | |
| For example, ``axis=0`` normalizes each column of a 2-d array | |
| by aggregating over the rows (0-axis). | |
| Similarly, ``axis=1`` normalizes each row of a 2-d array. | |
| This function also supports thresholding small-norm slices: | |
| any slice (i.e., row or column) with norm below a specified | |
| ``threshold`` can be left un-normalized, set to all-zeros, or | |
| filled with uniform non-zero values that normalize to 1. | |
| Note: the semantics of this function differ from | |
| `scipy.linalg.norm` in two ways: multi-dimensional arrays | |
| are supported, but matrix-norms are not. | |
| Parameters | |
| ---------- | |
| S : np.ndarray | |
| The array to normalize | |
| norm : {np.inf, -np.inf, 0, float > 0, None} | |
| - `np.inf` : maximum absolute value | |
| - `-np.inf` : minimum absolute value | |
| - `0` : number of non-zeros (the support) | |
| - float : corresponding l_p norm | |
| See `scipy.linalg.norm` for details. | |
| - None : no normalization is performed | |
| axis : int [scalar] | |
| Axis along which to compute the norm. | |
| threshold : number > 0 [optional] | |
| Only the columns (or rows) with norm at least ``threshold`` are | |
| normalized. | |
| By default, the threshold is determined from | |
| the numerical precision of ``S.dtype``. | |
| fill : None or bool | |
| If None, then columns (or rows) with norm below ``threshold`` | |
| are left as is. | |
| If False, then columns (rows) with norm below ``threshold`` | |
| are set to 0. | |
| If True, then columns (rows) with norm below ``threshold`` | |
| are filled uniformly such that the corresponding norm is 1. | |
| .. note:: ``fill=True`` is incompatible with ``norm=0`` because | |
| no uniform vector exists with l0 "norm" equal to 1. | |
| Returns | |
| ------- | |
| S_norm : np.ndarray [shape=S.shape] | |
| Normalized array | |
| Raises | |
| ------ | |
| ParameterError | |
| If ``norm`` is not among the valid types defined above | |
| If ``S`` is not finite | |
| If ``fill=True`` and ``norm=0`` | |
| See Also | |
| -------- | |
| scipy.linalg.norm | |
| Notes | |
| ----- | |
| This function caches at level 40. | |
| Examples | |
| -------- | |
| >>> # Construct an example matrix | |
| >>> S = np.vander(np.arange(-2.0, 2.0)) | |
| >>> S | |
| array([[-8., 4., -2., 1.], | |
| [-1., 1., -1., 1.], | |
| [ 0., 0., 0., 1.], | |
| [ 1., 1., 1., 1.]]) | |
| >>> # Max (l-infinity)-normalize the columns | |
| >>> librosa.util.normalize(S) | |
| array([[-1. , 1. , -1. , 1. ], | |
| [-0.125, 0.25 , -0.5 , 1. ], | |
| [ 0. , 0. , 0. , 1. ], | |
| [ 0.125, 0.25 , 0.5 , 1. ]]) | |
| >>> # Max (l-infinity)-normalize the rows | |
| >>> librosa.util.normalize(S, axis=1) | |
| array([[-1. , 0.5 , -0.25 , 0.125], | |
| [-1. , 1. , -1. , 1. ], | |
| [ 0. , 0. , 0. , 1. ], | |
| [ 1. , 1. , 1. , 1. ]]) | |
| >>> # l1-normalize the columns | |
| >>> librosa.util.normalize(S, norm=1) | |
| array([[-0.8 , 0.667, -0.5 , 0.25 ], | |
| [-0.1 , 0.167, -0.25 , 0.25 ], | |
| [ 0. , 0. , 0. , 0.25 ], | |
| [ 0.1 , 0.167, 0.25 , 0.25 ]]) | |
| >>> # l2-normalize the columns | |
| >>> librosa.util.normalize(S, norm=2) | |
| array([[-0.985, 0.943, -0.816, 0.5 ], | |
| [-0.123, 0.236, -0.408, 0.5 ], | |
| [ 0. , 0. , 0. , 0.5 ], | |
| [ 0.123, 0.236, 0.408, 0.5 ]]) | |
| >>> # Thresholding and filling | |
| >>> S[:, -1] = 1e-308 | |
| >>> S | |
| array([[ -8.000e+000, 4.000e+000, -2.000e+000, | |
| 1.000e-308], | |
| [ -1.000e+000, 1.000e+000, -1.000e+000, | |
| 1.000e-308], | |
| [ 0.000e+000, 0.000e+000, 0.000e+000, | |
| 1.000e-308], | |
| [ 1.000e+000, 1.000e+000, 1.000e+000, | |
| 1.000e-308]]) | |
| >>> # By default, small-norm columns are left untouched | |
| >>> librosa.util.normalize(S) | |
| array([[ -1.000e+000, 1.000e+000, -1.000e+000, | |
| 1.000e-308], | |
| [ -1.250e-001, 2.500e-001, -5.000e-001, | |
| 1.000e-308], | |
| [ 0.000e+000, 0.000e+000, 0.000e+000, | |
| 1.000e-308], | |
| [ 1.250e-001, 2.500e-001, 5.000e-001, | |
| 1.000e-308]]) | |
| >>> # Small-norm columns can be zeroed out | |
| >>> librosa.util.normalize(S, fill=False) | |
| array([[-1. , 1. , -1. , 0. ], | |
| [-0.125, 0.25 , -0.5 , 0. ], | |
| [ 0. , 0. , 0. , 0. ], | |
| [ 0.125, 0.25 , 0.5 , 0. ]]) | |
| >>> # Or set to constant with unit-norm | |
| >>> librosa.util.normalize(S, fill=True) | |
| array([[-1. , 1. , -1. , 1. ], | |
| [-0.125, 0.25 , -0.5 , 1. ], | |
| [ 0. , 0. , 0. , 1. ], | |
| [ 0.125, 0.25 , 0.5 , 1. ]]) | |
| >>> # With an l1 norm instead of max-norm | |
| >>> librosa.util.normalize(S, norm=1, fill=True) | |
| array([[-0.8 , 0.667, -0.5 , 0.25 ], | |
| [-0.1 , 0.167, -0.25 , 0.25 ], | |
| [ 0. , 0. , 0. , 0.25 ], | |
| [ 0.1 , 0.167, 0.25 , 0.25 ]]) | |
| """ | |
| # Avoid div-by-zero | |
| if threshold is None: | |
| threshold = tiny(S) | |
| elif threshold <= 0: | |
| raise ParameterError(f"threshold={threshold} must be strictly positive") | |
| if fill not in [None, False, True]: | |
| raise ParameterError(f"fill={fill} must be None or boolean") | |
| if not np.all(np.isfinite(S)): | |
| raise ParameterError("Input must be finite") | |
| # All norms only depend on magnitude, let's do that first | |
| mag = np.abs(S).astype(float) | |
| # For max/min norms, filling with 1 works | |
| fill_norm = 1 | |
| if norm is None: | |
| return S | |
| elif norm == np.inf: | |
| length = np.max(mag, axis=axis, keepdims=True) | |
| elif norm == -np.inf: | |
| length = np.min(mag, axis=axis, keepdims=True) | |
| elif norm == 0: | |
| if fill is True: | |
| raise ParameterError("Cannot normalize with norm=0 and fill=True") | |
| length = np.sum(mag > 0, axis=axis, keepdims=True, dtype=mag.dtype) | |
| elif np.issubdtype(type(norm), np.number) and norm > 0: | |
| length = np.sum(mag**norm, axis=axis, keepdims=True) ** (1.0 / norm) | |
| if axis is None: | |
| fill_norm = mag.size ** (-1.0 / norm) | |
| else: | |
| fill_norm = mag.shape[axis] ** (-1.0 / norm) | |
| else: | |
| raise ParameterError(f"Unsupported norm: {repr(norm)}") | |
| # indices where norm is below the threshold | |
| small_idx = length < threshold | |
| Snorm = np.empty_like(S) | |
| if fill is None: | |
| # Leave small indices un-normalized | |
| length[small_idx] = 1.0 | |
| Snorm[:] = S / length | |
| elif fill: | |
| # If we have a non-zero fill value, we locate those entries by | |
| # doing a nan-divide. | |
| # If S was finite, then length is finite (except for small positions) | |
| length[small_idx] = np.nan | |
| Snorm[:] = S / length | |
| Snorm[np.isnan(Snorm)] = fill_norm | |
| else: | |
| # Set small values to zero by doing an inf-divide. | |
| # This is safe (by IEEE-754) as long as S is finite. | |
| length[small_idx] = np.inf | |
| Snorm[:] = S / length | |
| return Snorm | |
| def _localmax_sten(x): # pragma: no cover | |
| """Numba stencil for local maxima computation""" | |
| return (x[0] > x[-1]) & (x[0] >= x[1]) | |
| def _localmin_sten(x): # pragma: no cover | |
| """Numba stencil for local minima computation""" | |
| return (x[0] < x[-1]) & (x[0] <= x[1]) | |
| def _localmax(x, y): # pragma: no cover | |
| """Vectorized wrapper for the localmax stencil""" | |
| y[:] = _localmax_sten(x) | |
| def _localmin(x, y): # pragma: no cover | |
| """Vectorized wrapper for the localmin stencil""" | |
| y[:] = _localmin_sten(x) | |
| def localmax(x: np.ndarray, *, axis: int = 0) -> np.ndarray: | |
| """Find local maxima in an array | |
| An element ``x[i]`` is considered a local maximum if the following | |
| conditions are met: | |
| - ``x[i] > x[i-1]`` | |
| - ``x[i] >= x[i+1]`` | |
| Note that the first condition is strict, and that the first element | |
| ``x[0]`` will never be considered as a local maximum. | |
| Examples | |
| -------- | |
| >>> x = np.array([1, 0, 1, 2, -1, 0, -2, 1]) | |
| >>> librosa.util.localmax(x) | |
| array([False, False, False, True, False, True, False, True], dtype=bool) | |
| >>> # Two-dimensional example | |
| >>> x = np.array([[1,0,1], [2, -1, 0], [2, 1, 3]]) | |
| >>> librosa.util.localmax(x, axis=0) | |
| array([[False, False, False], | |
| [ True, False, False], | |
| [False, True, True]], dtype=bool) | |
| >>> librosa.util.localmax(x, axis=1) | |
| array([[False, False, True], | |
| [False, False, True], | |
| [False, False, True]], dtype=bool) | |
| Parameters | |
| ---------- | |
| x : np.ndarray [shape=(d1,d2,...)] | |
| input vector or array | |
| axis : int | |
| axis along which to compute local maximality | |
| Returns | |
| ------- | |
| m : np.ndarray [shape=x.shape, dtype=bool] | |
| indicator array of local maximality along ``axis`` | |
| See Also | |
| -------- | |
| localmin | |
| """ | |
| # Rotate the target axis to the end | |
| xi = x.swapaxes(-1, axis) | |
| # Allocate the output array and rotate target axis | |
| lmax = np.empty_like(x, dtype=bool) | |
| lmaxi = lmax.swapaxes(-1, axis) | |
| # Call the vectorized stencil | |
| _localmax(xi, lmaxi) | |
| # Handle the edge condition not covered by the stencil | |
| lmaxi[..., -1] = xi[..., -1] > xi[..., -2] | |
| return lmax | |
| def localmin(x: np.ndarray, *, axis: int = 0) -> np.ndarray: | |
| """Find local minima in an array | |
| An element ``x[i]`` is considered a local minimum if the following | |
| conditions are met: | |
| - ``x[i] < x[i-1]`` | |
| - ``x[i] <= x[i+1]`` | |
| Note that the first condition is strict, and that the first element | |
| ``x[0]`` will never be considered as a local minimum. | |
| Examples | |
| -------- | |
| >>> x = np.array([1, 0, 1, 2, -1, 0, -2, 1]) | |
| >>> librosa.util.localmin(x) | |
| array([False, True, False, False, True, False, True, False]) | |
| >>> # Two-dimensional example | |
| >>> x = np.array([[1,0,1], [2, -1, 0], [2, 1, 3]]) | |
| >>> librosa.util.localmin(x, axis=0) | |
| array([[False, False, False], | |
| [False, True, True], | |
| [False, False, False]]) | |
| >>> librosa.util.localmin(x, axis=1) | |
| array([[False, True, False], | |
| [False, True, False], | |
| [False, True, False]]) | |
| Parameters | |
| ---------- | |
| x : np.ndarray [shape=(d1,d2,...)] | |
| input vector or array | |
| axis : int | |
| axis along which to compute local minimality | |
| Returns | |
| ------- | |
| m : np.ndarray [shape=x.shape, dtype=bool] | |
| indicator array of local minimality along ``axis`` | |
| See Also | |
| -------- | |
| localmax | |
| """ | |
| # Rotate the target axis to the end | |
| xi = x.swapaxes(-1, axis) | |
| # Allocate the output array and rotate target axis | |
| lmin = np.empty_like(x, dtype=bool) | |
| lmini = lmin.swapaxes(-1, axis) | |
| # Call the vectorized stencil | |
| _localmin(xi, lmini) | |
| # Handle the edge condition not covered by the stencil | |
| lmini[..., -1] = xi[..., -1] < xi[..., -2] | |
| return lmin | |
| def peak_pick( | |
| x: np.ndarray, | |
| *, | |
| pre_max: int, | |
| post_max: int, | |
| pre_avg: int, | |
| post_avg: int, | |
| delta: float, | |
| wait: int, | |
| ) -> np.ndarray: | |
| """Uses a flexible heuristic to pick peaks in a signal. | |
| A sample n is selected as an peak if the corresponding ``x[n]`` | |
| fulfills the following three conditions: | |
| 1. ``x[n] == max(x[n - pre_max:n + post_max])`` | |
| 2. ``x[n] >= mean(x[n - pre_avg:n + post_avg]) + delta`` | |
| 3. ``n - previous_n > wait`` | |
| where ``previous_n`` is the last sample picked as a peak (greedily). | |
| This implementation is based on [#]_ and [#]_. | |
| .. [#] Boeck, Sebastian, Florian Krebs, and Markus Schedl. | |
| "Evaluating the Online Capabilities of Onset Detection Methods." ISMIR. | |
| 2012. | |
| .. [#] https://github.com/CPJKU/onset_detection/blob/master/onset_program.py | |
| Parameters | |
| ---------- | |
| x : np.ndarray [shape=(n,)] | |
| input signal to peak picks from | |
| pre_max : int >= 0 [scalar] | |
| number of samples before ``n`` over which max is computed | |
| post_max : int >= 1 [scalar] | |
| number of samples after ``n`` over which max is computed | |
| pre_avg : int >= 0 [scalar] | |
| number of samples before ``n`` over which mean is computed | |
| post_avg : int >= 1 [scalar] | |
| number of samples after ``n`` over which mean is computed | |
| delta : float >= 0 [scalar] | |
| threshold offset for mean | |
| wait : int >= 0 [scalar] | |
| number of samples to wait after picking a peak | |
| Returns | |
| ------- | |
| peaks : np.ndarray [shape=(n_peaks,), dtype=int] | |
| indices of peaks in ``x`` | |
| Raises | |
| ------ | |
| ParameterError | |
| If any input lies outside its defined range | |
| Examples | |
| -------- | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr, | |
| ... hop_length=512, | |
| ... aggregate=np.median) | |
| >>> peaks = librosa.util.peak_pick(onset_env, pre_max=3, post_max=3, pre_avg=3, post_avg=5, delta=0.5, wait=10) | |
| >>> peaks | |
| array([ 3, 27, 40, 61, 72, 88, 103]) | |
| >>> import matplotlib.pyplot as plt | |
| >>> times = librosa.times_like(onset_env, sr=sr, hop_length=512) | |
| >>> fig, ax = plt.subplots(nrows=2, sharex=True) | |
| >>> D = np.abs(librosa.stft(y)) | |
| >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), | |
| ... y_axis='log', x_axis='time', ax=ax[1]) | |
| >>> ax[0].plot(times, onset_env, alpha=0.8, label='Onset strength') | |
| >>> ax[0].vlines(times[peaks], 0, | |
| ... onset_env.max(), color='r', alpha=0.8, | |
| ... label='Selected peaks') | |
| >>> ax[0].legend(frameon=True, framealpha=0.8) | |
| >>> ax[0].label_outer() | |
| """ | |
| if pre_max < 0: | |
| raise ParameterError("pre_max must be non-negative") | |
| if pre_avg < 0: | |
| raise ParameterError("pre_avg must be non-negative") | |
| if delta < 0: | |
| raise ParameterError("delta must be non-negative") | |
| if wait < 0: | |
| raise ParameterError("wait must be non-negative") | |
| if post_max <= 0: | |
| raise ParameterError("post_max must be positive") | |
| if post_avg <= 0: | |
| raise ParameterError("post_avg must be positive") | |
| if x.ndim != 1: | |
| raise ParameterError("input array must be one-dimensional") | |
| # Ensure valid index types | |
| pre_max = valid_int(pre_max, cast=np.ceil) | |
| post_max = valid_int(post_max, cast=np.ceil) | |
| pre_avg = valid_int(pre_avg, cast=np.ceil) | |
| post_avg = valid_int(post_avg, cast=np.ceil) | |
| wait = valid_int(wait, cast=np.ceil) | |
| # Get the maximum of the signal over a sliding window | |
| max_length = pre_max + post_max | |
| max_origin = np.ceil(0.5 * (pre_max - post_max)) | |
| # Using mode='constant' and cval=x.min() effectively truncates | |
| # the sliding window at the boundaries | |
| mov_max = scipy.ndimage.filters.maximum_filter1d( | |
| x, int(max_length), mode="constant", origin=int(max_origin), cval=x.min() | |
| ) | |
| # Get the mean of the signal over a sliding window | |
| avg_length = pre_avg + post_avg | |
| avg_origin = np.ceil(0.5 * (pre_avg - post_avg)) | |
| # Here, there is no mode which results in the behavior we want, | |
| # so we'll correct below. | |
| mov_avg = scipy.ndimage.filters.uniform_filter1d( | |
| x, int(avg_length), mode="nearest", origin=int(avg_origin) | |
| ) | |
| # Correct sliding average at the beginning | |
| n = 0 | |
| # Only need to correct in the range where the window needs to be truncated | |
| while n - pre_avg < 0 and n < x.shape[0]: | |
| # This just explicitly does mean(x[n - pre_avg:n + post_avg]) | |
| # with truncation | |
| start = n - pre_avg | |
| start = start if start > 0 else 0 | |
| mov_avg[n] = np.mean(x[start : n + post_avg]) | |
| n += 1 | |
| # Correct sliding average at the end | |
| n = x.shape[0] - post_avg | |
| # When post_avg > x.shape[0] (weird case), reset to 0 | |
| n = n if n > 0 else 0 | |
| while n < x.shape[0]: | |
| start = n - pre_avg | |
| start = start if start > 0 else 0 | |
| mov_avg[n] = np.mean(x[start : n + post_avg]) | |
| n += 1 | |
| # First mask out all entries not equal to the local max | |
| detections = x * (x == mov_max) | |
| # Then mask out all entries less than the thresholded average | |
| detections = detections * (detections >= (mov_avg + delta)) | |
| # Initialize peaks array, to be filled greedily | |
| peaks = [] | |
| # Remove onsets which are close together in time | |
| last_onset = -np.inf | |
| for i in np.nonzero(detections)[0]: | |
| # Only report an onset if the "wait" samples was reported | |
| if i > last_onset + wait: | |
| peaks.append(i) | |
| # Save last reported onset | |
| last_onset = i | |
| return np.array(peaks) | |
| def sparsify_rows( | |
| x: np.ndarray, *, quantile: float = 0.01, dtype: Optional[DTypeLike] = None | |
| ) -> scipy.sparse.csr_matrix: | |
| """Return a row-sparse matrix approximating the input | |
| Parameters | |
| ---------- | |
| x : np.ndarray [ndim <= 2] | |
| The input matrix to sparsify. | |
| quantile : float in [0, 1.0) | |
| Percentage of magnitude to discard in each row of ``x`` | |
| dtype : np.dtype, optional | |
| The dtype of the output array. | |
| If not provided, then ``x.dtype`` will be used. | |
| Returns | |
| ------- | |
| x_sparse : ``scipy.sparse.csr_matrix`` [shape=x.shape] | |
| Row-sparsified approximation of ``x`` | |
| If ``x.ndim == 1``, then ``x`` is interpreted as a row vector, | |
| and ``x_sparse.shape == (1, len(x))``. | |
| Raises | |
| ------ | |
| ParameterError | |
| If ``x.ndim > 2`` | |
| If ``quantile`` lies outside ``[0, 1.0)`` | |
| Notes | |
| ----- | |
| This function caches at level 40. | |
| Examples | |
| -------- | |
| >>> # Construct a Hann window to sparsify | |
| >>> x = scipy.signal.hann(32) | |
| >>> x | |
| array([ 0. , 0.01 , 0.041, 0.09 , 0.156, 0.236, 0.326, | |
| 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, | |
| 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, | |
| 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, | |
| 0.09 , 0.041, 0.01 , 0. ]) | |
| >>> # Discard the bottom percentile | |
| >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.01) | |
| >>> x_sparse | |
| <1x32 sparse matrix of type '<type 'numpy.float64'>' | |
| with 26 stored elements in Compressed Sparse Row format> | |
| >>> x_sparse.todense() | |
| matrix([[ 0. , 0. , 0. , 0.09 , 0.156, 0.236, 0.326, | |
| 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, | |
| 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, | |
| 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, | |
| 0.09 , 0. , 0. , 0. ]]) | |
| >>> # Discard up to the bottom 10th percentile | |
| >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.1) | |
| >>> x_sparse | |
| <1x32 sparse matrix of type '<type 'numpy.float64'>' | |
| with 20 stored elements in Compressed Sparse Row format> | |
| >>> x_sparse.todense() | |
| matrix([[ 0. , 0. , 0. , 0. , 0. , 0. , 0.326, | |
| 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, | |
| 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, | |
| 0.72 , 0.625, 0.525, 0.424, 0.326, 0. , 0. , | |
| 0. , 0. , 0. , 0. ]]) | |
| """ | |
| if x.ndim == 1: | |
| x = x.reshape((1, -1)) | |
| elif x.ndim > 2: | |
| raise ParameterError( | |
| f"Input must have 2 or fewer dimensions. Provided x.shape={x.shape}." | |
| ) | |
| if not 0.0 <= quantile < 1: | |
| raise ParameterError(f"Invalid quantile {quantile:.2f}") | |
| if dtype is None: | |
| dtype = x.dtype | |
| x_sparse = scipy.sparse.lil_matrix(x.shape, dtype=dtype) | |
| mags = np.abs(x) | |
| norms = np.sum(mags, axis=1, keepdims=True) | |
| mag_sort = np.sort(mags, axis=1) | |
| cumulative_mag = np.cumsum(mag_sort / norms, axis=1) | |
| threshold_idx = np.argmin(cumulative_mag < quantile, axis=1) | |
| for i, j in enumerate(threshold_idx): | |
| idx = np.where(mags[i] >= mag_sort[i, j]) | |
| x_sparse[i, idx] = x[i, idx] | |
| return x_sparse.tocsr() | |
| def buf_to_float( | |
| x: np.ndarray, *, n_bytes: int = 2, dtype: DTypeLike = np.float32 | |
| ) -> np.ndarray: | |
| """Convert an integer buffer to floating point values. | |
| This is primarily useful when loading integer-valued wav data | |
| into numpy arrays. | |
| Parameters | |
| ---------- | |
| x : np.ndarray [dtype=int] | |
| The integer-valued data buffer | |
| n_bytes : int [1, 2, 4] | |
| The number of bytes per sample in ``x`` | |
| dtype : numeric type | |
| The target output type (default: 32-bit float) | |
| Returns | |
| ------- | |
| x_float : np.ndarray [dtype=float] | |
| The input data buffer cast to floating point | |
| """ | |
| # Invert the scale of the data | |
| scale = 1.0 / float(1 << ((8 * n_bytes) - 1)) | |
| # Construct the format string | |
| fmt = f"<i{n_bytes:d}" | |
| # Rescale and format the data buffer | |
| return scale * np.frombuffer(x, fmt).astype(dtype) | |
| def index_to_slice( | |
| idx: _SequenceLike[int], | |
| *, | |
| idx_min: Optional[int] = None, | |
| idx_max: Optional[int] = None, | |
| step: Optional[int] = None, | |
| pad: bool = True, | |
| ) -> List[slice]: | |
| """Generate a slice array from an index array. | |
| Parameters | |
| ---------- | |
| idx : list-like | |
| Array of index boundaries | |
| idx_min, idx_max : None or int | |
| Minimum and maximum allowed indices | |
| step : None or int | |
| Step size for each slice. If `None`, then the default | |
| step of 1 is used. | |
| pad : boolean | |
| If `True`, pad ``idx`` to span the range ``idx_min:idx_max``. | |
| Returns | |
| ------- | |
| slices : list of slice | |
| ``slices[i] = slice(idx[i], idx[i+1], step)`` | |
| Additional slice objects may be added at the beginning or end, | |
| depending on whether ``pad==True`` and the supplied values for | |
| ``idx_min`` and ``idx_max``. | |
| See Also | |
| -------- | |
| fix_frames | |
| Examples | |
| -------- | |
| >>> # Generate slices from spaced indices | |
| >>> librosa.util.index_to_slice(np.arange(20, 100, 15)) | |
| [slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), slice(65, 80, None), | |
| slice(80, 95, None)] | |
| >>> # Pad to span the range (0, 100) | |
| >>> librosa.util.index_to_slice(np.arange(20, 100, 15), | |
| ... idx_min=0, idx_max=100) | |
| [slice(0, 20, None), slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), | |
| slice(65, 80, None), slice(80, 95, None), slice(95, 100, None)] | |
| >>> # Use a step of 5 for each slice | |
| >>> librosa.util.index_to_slice(np.arange(20, 100, 15), | |
| ... idx_min=0, idx_max=100, step=5) | |
| [slice(0, 20, 5), slice(20, 35, 5), slice(35, 50, 5), slice(50, 65, 5), slice(65, 80, 5), | |
| slice(80, 95, 5), slice(95, 100, 5)] | |
| """ | |
| # First, normalize the index set | |
| idx_fixed = fix_frames(idx, x_min=idx_min, x_max=idx_max, pad=pad) | |
| # Now convert the indices to slices | |
| return [slice(start, end, step) for (start, end) in zip(idx_fixed, idx_fixed[1:])] | |
| def sync( | |
| data: np.ndarray, | |
| idx: Union[Sequence[int], Sequence[slice]], | |
| *, | |
| aggregate: Optional[Callable[..., Any]] = None, | |
| pad: bool = True, | |
| axis: int = -1, | |
| ) -> np.ndarray: | |
| """Synchronous aggregation of a multi-dimensional array between boundaries | |
| .. note:: | |
| In order to ensure total coverage, boundary points may be added | |
| to ``idx``. | |
| If synchronizing a feature matrix against beat tracker output, ensure | |
| that frame index numbers are properly aligned and use the same hop length. | |
| Parameters | |
| ---------- | |
| data : np.ndarray | |
| multi-dimensional array of features | |
| idx : sequence of ints or slices | |
| Either an ordered array of boundary indices, or | |
| an iterable collection of slice objects. | |
| aggregate : function | |
| aggregation function (default: `np.mean`) | |
| pad : boolean | |
| If `True`, ``idx`` is padded to span the full range ``[0, data.shape[axis]]`` | |
| axis : int | |
| The axis along which to aggregate data | |
| Returns | |
| ------- | |
| data_sync : ndarray | |
| ``data_sync`` will have the same dimension as ``data``, except that the ``axis`` | |
| coordinate will be reduced according to ``idx``. | |
| For example, a 2-dimensional ``data`` with ``axis=-1`` should satisfy:: | |
| data_sync[:, i] = aggregate(data[:, idx[i-1]:idx[i]], axis=-1) | |
| Raises | |
| ------ | |
| ParameterError | |
| If the index set is not of consistent type (all slices or all integers) | |
| Notes | |
| ----- | |
| This function caches at level 40. | |
| Examples | |
| -------- | |
| Beat-synchronous CQT spectra | |
| >>> y, sr = librosa.load(librosa.ex('choice')) | |
| >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, trim=False) | |
| >>> C = np.abs(librosa.cqt(y=y, sr=sr)) | |
| >>> beats = librosa.util.fix_frames(beats) | |
| By default, use mean aggregation | |
| >>> C_avg = librosa.util.sync(C, beats) | |
| Use median-aggregation instead of mean | |
| >>> C_med = librosa.util.sync(C, beats, | |
| ... aggregate=np.median) | |
| Or sub-beat synchronization | |
| >>> sub_beats = librosa.segment.subsegment(C, beats) | |
| >>> sub_beats = librosa.util.fix_frames(sub_beats) | |
| >>> C_med_sub = librosa.util.sync(C, sub_beats, aggregate=np.median) | |
| Plot the results | |
| >>> import matplotlib.pyplot as plt | |
| >>> beat_t = librosa.frames_to_time(beats, sr=sr) | |
| >>> subbeat_t = librosa.frames_to_time(sub_beats, sr=sr) | |
| >>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True) | |
| >>> librosa.display.specshow(librosa.amplitude_to_db(C, | |
| ... ref=np.max), | |
| ... x_axis='time', ax=ax[0]) | |
| >>> ax[0].set(title='CQT power, shape={}'.format(C.shape)) | |
| >>> ax[0].label_outer() | |
| >>> librosa.display.specshow(librosa.amplitude_to_db(C_med, | |
| ... ref=np.max), | |
| ... x_coords=beat_t, x_axis='time', ax=ax[1]) | |
| >>> ax[1].set(title='Beat synchronous CQT power, ' | |
| ... 'shape={}'.format(C_med.shape)) | |
| >>> ax[1].label_outer() | |
| >>> librosa.display.specshow(librosa.amplitude_to_db(C_med_sub, | |
| ... ref=np.max), | |
| ... x_coords=subbeat_t, x_axis='time', ax=ax[2]) | |
| >>> ax[2].set(title='Sub-beat synchronous CQT power, ' | |
| ... 'shape={}'.format(C_med_sub.shape)) | |
| """ | |
| if aggregate is None: | |
| aggregate = np.mean | |
| shape = list(data.shape) | |
| if np.all([isinstance(_, slice) for _ in idx]): | |
| slices = idx | |
| elif np.all([np.issubdtype(type(_), np.integer) for _ in idx]): | |
| slices = index_to_slice( | |
| np.asarray(idx), idx_min=0, idx_max=shape[axis], pad=pad | |
| ) | |
| else: | |
| raise ParameterError(f"Invalid index set: {idx}") | |
| agg_shape = list(shape) | |
| agg_shape[axis] = len(slices) | |
| data_agg = np.empty( | |
| agg_shape, order="F" if np.isfortran(data) else "C", dtype=data.dtype | |
| ) | |
| idx_in = [slice(None)] * data.ndim | |
| idx_agg = [slice(None)] * data_agg.ndim | |
| for i, segment in enumerate(slices): | |
| idx_in[axis] = segment # type: ignore | |
| idx_agg[axis] = i # type: ignore | |
| data_agg[tuple(idx_agg)] = aggregate(data[tuple(idx_in)], axis=axis) | |
| return data_agg | |
| def softmask( | |
| X: np.ndarray, X_ref: np.ndarray, *, power: float = 1, split_zeros: bool = False | |
| ) -> np.ndarray: | |
| """Robustly compute a soft-mask operation. | |
| ``M = X**power / (X**power + X_ref**power)`` | |
| Parameters | |
| ---------- | |
| X : np.ndarray | |
| The (non-negative) input array corresponding to the positive mask elements | |
| X_ref : np.ndarray | |
| The (non-negative) array of reference or background elements. | |
| Must have the same shape as ``X``. | |
| power : number > 0 or np.inf | |
| If finite, returns the soft mask computed in a numerically stable way | |
| If infinite, returns a hard (binary) mask equivalent to ``X > X_ref``. | |
| Note: for hard masks, ties are always broken in favor of ``X_ref`` (``mask=0``). | |
| split_zeros : bool | |
| If `True`, entries where ``X`` and ``X_ref`` are both small (close to 0) | |
| will receive mask values of 0.5. | |
| Otherwise, the mask is set to 0 for these entries. | |
| Returns | |
| ------- | |
| mask : np.ndarray, shape=X.shape | |
| The output mask array | |
| Raises | |
| ------ | |
| ParameterError | |
| If ``X`` and ``X_ref`` have different shapes. | |
| If ``X`` or ``X_ref`` are negative anywhere | |
| If ``power <= 0`` | |
| Examples | |
| -------- | |
| >>> X = 2 * np.ones((3, 3)) | |
| >>> X_ref = np.vander(np.arange(3.0)) | |
| >>> X | |
| array([[ 2., 2., 2.], | |
| [ 2., 2., 2.], | |
| [ 2., 2., 2.]]) | |
| >>> X_ref | |
| array([[ 0., 0., 1.], | |
| [ 1., 1., 1.], | |
| [ 4., 2., 1.]]) | |
| >>> librosa.util.softmask(X, X_ref, power=1) | |
| array([[ 1. , 1. , 0.667], | |
| [ 0.667, 0.667, 0.667], | |
| [ 0.333, 0.5 , 0.667]]) | |
| >>> librosa.util.softmask(X_ref, X, power=1) | |
| array([[ 0. , 0. , 0.333], | |
| [ 0.333, 0.333, 0.333], | |
| [ 0.667, 0.5 , 0.333]]) | |
| >>> librosa.util.softmask(X, X_ref, power=2) | |
| array([[ 1. , 1. , 0.8], | |
| [ 0.8, 0.8, 0.8], | |
| [ 0.2, 0.5, 0.8]]) | |
| >>> librosa.util.softmask(X, X_ref, power=4) | |
| array([[ 1. , 1. , 0.941], | |
| [ 0.941, 0.941, 0.941], | |
| [ 0.059, 0.5 , 0.941]]) | |
| >>> librosa.util.softmask(X, X_ref, power=100) | |
| array([[ 1.000e+00, 1.000e+00, 1.000e+00], | |
| [ 1.000e+00, 1.000e+00, 1.000e+00], | |
| [ 7.889e-31, 5.000e-01, 1.000e+00]]) | |
| >>> librosa.util.softmask(X, X_ref, power=np.inf) | |
| array([[ True, True, True], | |
| [ True, True, True], | |
| [False, False, True]], dtype=bool) | |
| """ | |
| if X.shape != X_ref.shape: | |
| raise ParameterError(f"Shape mismatch: {X.shape}!={X_ref.shape}") | |
| if np.any(X < 0) or np.any(X_ref < 0): | |
| raise ParameterError("X and X_ref must be non-negative") | |
| if power <= 0: | |
| raise ParameterError("power must be strictly positive") | |
| # We're working with ints, cast to float. | |
| dtype = X.dtype | |
| if not np.issubdtype(dtype, np.floating): | |
| dtype = np.float32 | |
| # Re-scale the input arrays relative to the larger value | |
| Z = np.maximum(X, X_ref).astype(dtype) | |
| bad_idx = Z < np.finfo(dtype).tiny | |
| Z[bad_idx] = 1 | |
| # For finite power, compute the softmask | |
| mask: np.ndarray | |
| if np.isfinite(power): | |
| mask = (X / Z) ** power | |
| ref_mask = (X_ref / Z) ** power | |
| good_idx = ~bad_idx | |
| mask[good_idx] /= mask[good_idx] + ref_mask[good_idx] | |
| # Wherever energy is below energy in both inputs, split the mask | |
| if split_zeros: | |
| mask[bad_idx] = 0.5 | |
| else: | |
| mask[bad_idx] = 0.0 | |
| else: | |
| # Otherwise, compute the hard mask | |
| mask = X > X_ref | |
| return mask | |
| def tiny(x: Union[float, np.ndarray]) -> _FloatLike_co: | |
| """Compute the tiny-value corresponding to an input's data type. | |
| This is the smallest "usable" number representable in ``x.dtype`` | |
| (e.g., float32). | |
| This is primarily useful for determining a threshold for | |
| numerical underflow in division or multiplication operations. | |
| Parameters | |
| ---------- | |
| x : number or np.ndarray | |
| The array to compute the tiny-value for. | |
| All that matters here is ``x.dtype`` | |
| Returns | |
| ------- | |
| tiny_value : float | |
| The smallest positive usable number for the type of ``x``. | |
| If ``x`` is integer-typed, then the tiny value for ``np.float32`` | |
| is returned instead. | |
| See Also | |
| -------- | |
| numpy.finfo | |
| Examples | |
| -------- | |
| For a standard double-precision floating point number: | |
| >>> librosa.util.tiny(1.0) | |
| 2.2250738585072014e-308 | |
| Or explicitly as double-precision | |
| >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float64)) | |
| 2.2250738585072014e-308 | |
| Or complex numbers | |
| >>> librosa.util.tiny(1j) | |
| 2.2250738585072014e-308 | |
| Single-precision floating point: | |
| >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float32)) | |
| 1.1754944e-38 | |
| Integer | |
| >>> librosa.util.tiny(5) | |
| 1.1754944e-38 | |
| """ | |
| # Make sure we have an array view | |
| x = np.asarray(x) | |
| # Only floating types generate a tiny | |
| if np.issubdtype(x.dtype, np.floating) or np.issubdtype( | |
| x.dtype, np.complexfloating | |
| ): | |
| dtype = x.dtype | |
| else: | |
| dtype = np.dtype(np.float32) | |
| return np.finfo(dtype).tiny | |
| def fill_off_diagonal(x: np.ndarray, *, radius: float, value: float = 0) -> None: | |
| """Sets all cells of a matrix to a given ``value`` | |
| if they lie outside a constraint region. | |
| In this case, the constraint region is the | |
| Sakoe-Chiba band which runs with a fixed ``radius`` | |
| along the main diagonal. | |
| When ``x.shape[0] != x.shape[1]``, the radius will be | |
| expanded so that ``x[-1, -1] = 1`` always. | |
| ``x`` will be modified in place. | |
| Parameters | |
| ---------- | |
| x : np.ndarray [shape=(N, M)] | |
| Input matrix, will be modified in place. | |
| radius : float | |
| The band radius (1/2 of the width) will be | |
| ``int(radius*min(x.shape))`` | |
| value : float | |
| ``x[n, m] = value`` when ``(n, m)`` lies outside the band. | |
| Examples | |
| -------- | |
| >>> x = np.ones((8, 8)) | |
| >>> librosa.util.fill_off_diagonal(x, radius=0.25) | |
| >>> x | |
| array([[1, 1, 0, 0, 0, 0, 0, 0], | |
| [1, 1, 1, 0, 0, 0, 0, 0], | |
| [0, 1, 1, 1, 0, 0, 0, 0], | |
| [0, 0, 1, 1, 1, 0, 0, 0], | |
| [0, 0, 0, 1, 1, 1, 0, 0], | |
| [0, 0, 0, 0, 1, 1, 1, 0], | |
| [0, 0, 0, 0, 0, 1, 1, 1], | |
| [0, 0, 0, 0, 0, 0, 1, 1]]) | |
| >>> x = np.ones((8, 12)) | |
| >>> librosa.util.fill_off_diagonal(x, radius=0.25) | |
| >>> x | |
| array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], | |
| [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], | |
| [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], | |
| [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], | |
| [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], | |
| [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0], | |
| [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], | |
| [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) | |
| """ | |
| nx, ny = x.shape | |
| # Calculate the radius in indices, rather than proportion | |
| radius = int(np.round(radius * np.min(x.shape))) | |
| nx, ny = x.shape | |
| offset = np.abs((x.shape[0] - x.shape[1])) | |
| if nx < ny: | |
| idx_u = np.triu_indices_from(x, k=radius + offset) | |
| idx_l = np.tril_indices_from(x, k=-radius) | |
| else: | |
| idx_u = np.triu_indices_from(x, k=radius) | |
| idx_l = np.tril_indices_from(x, k=-radius - offset) | |
| # modify input matrix | |
| x[idx_u] = value | |
| x[idx_l] = value | |
| def cyclic_gradient( | |
| data: np.ndarray, *, edge_order: Literal[1, 2] = 1, axis: int = -1 | |
| ) -> np.ndarray: | |
| """Estimate the gradient of a function over a uniformly sampled, | |
| periodic domain. | |
| This is essentially the same as `np.gradient`, except that edge effects | |
| are handled by wrapping the observations (i.e. assuming periodicity) | |
| rather than extrapolation. | |
| Parameters | |
| ---------- | |
| data : np.ndarray | |
| The function values observed at uniformly spaced positions on | |
| a periodic domain | |
| edge_order : {1, 2} | |
| The order of the difference approximation used for estimating | |
| the gradient | |
| axis : int | |
| The axis along which gradients are calculated. | |
| Returns | |
| ------- | |
| grad : np.ndarray like ``data`` | |
| The gradient of ``data`` taken along the specified axis. | |
| See Also | |
| -------- | |
| numpy.gradient | |
| Examples | |
| -------- | |
| This example estimates the gradient of cosine (-sine) from 64 | |
| samples using direct (aperiodic) and periodic gradient | |
| calculation. | |
| >>> import matplotlib.pyplot as plt | |
| >>> x = 2 * np.pi * np.linspace(0, 1, num=64, endpoint=False) | |
| >>> y = np.cos(x) | |
| >>> grad = np.gradient(y) | |
| >>> cyclic_grad = librosa.util.cyclic_gradient(y) | |
| >>> true_grad = -np.sin(x) * 2 * np.pi / len(x) | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.plot(x, true_grad, label='True gradient', linewidth=5, | |
| ... alpha=0.35) | |
| >>> ax.plot(x, cyclic_grad, label='cyclic_gradient') | |
| >>> ax.plot(x, grad, label='np.gradient', linestyle=':') | |
| >>> ax.legend() | |
| >>> # Zoom into the first part of the sequence | |
| >>> ax.set(xlim=[0, np.pi/16], ylim=[-0.025, 0.025]) | |
| """ | |
| # Wrap-pad the data along the target axis by `edge_order` on each side | |
| padding = [(0, 0)] * data.ndim | |
| padding[axis] = (edge_order, edge_order) | |
| data_pad = np.pad(data, padding, mode="wrap") | |
| # Compute the gradient | |
| grad = np.gradient(data_pad, edge_order=edge_order, axis=axis) | |
| # Remove the padding | |
| slices = [slice(None)] * data.ndim | |
| slices[axis] = slice(edge_order, -edge_order) | |
| grad_slice: np.ndarray = grad[tuple(slices)] | |
| return grad_slice | |
| # type: ignore | |
| def __shear_dense(X: np.ndarray, *, factor: int = +1, axis: int = -1) -> np.ndarray: | |
| """Numba-accelerated shear for dense (ndarray) arrays""" | |
| if axis == 0: | |
| X = X.T | |
| X_shear = np.empty_like(X) | |
| for i in range(X.shape[1]): | |
| X_shear[:, i] = np.roll(X[:, i], factor * i) | |
| if axis == 0: | |
| X_shear = X_shear.T | |
| return X_shear | |
| def __shear_sparse( | |
| X: scipy.sparse.spmatrix, *, factor: int = +1, axis: int = -1 | |
| ) -> scipy.sparse.spmatrix: | |
| """Fast shearing for sparse matrices | |
| Shearing is performed using CSC array indices, | |
| and the result is converted back to whatever sparse format | |
| the data was originally provided in. | |
| """ | |
| fmt = X.format | |
| if axis == 0: | |
| X = X.T | |
| # Now we're definitely rolling on the correct axis | |
| X_shear = X.tocsc(copy=True) | |
| # The idea here is to repeat the shear amount (factor * range) | |
| # by the number of non-zeros for each column. | |
| # The number of non-zeros is computed by diffing the index pointer array | |
| roll = np.repeat(factor * np.arange(X_shear.shape[1]), np.diff(X_shear.indptr)) | |
| # In-place roll | |
| np.mod(X_shear.indices + roll, X_shear.shape[0], out=X_shear.indices) | |
| if axis == 0: | |
| X_shear = X_shear.T | |
| # And convert back to the input format | |
| return X_shear.asformat(fmt) | |
| _ArrayOrSparseMatrix = TypeVar( | |
| "_ArrayOrSparseMatrix", bound=Union[np.ndarray, scipy.sparse.spmatrix] | |
| ) | |
| def shear(X: np.ndarray, *, factor: int = ..., axis: int = ...) -> np.ndarray: | |
| ... | |
| def shear( | |
| X: scipy.sparse.spmatrix, *, factor: int = ..., axis: int = ... | |
| ) -> scipy.sparse.spmatrix: | |
| ... | |
| def shear( | |
| X: _ArrayOrSparseMatrix, *, factor: int = 1, axis: int = -1 | |
| ) -> _ArrayOrSparseMatrix: | |
| """Shear a matrix by a given factor. | |
| The column ``X[:, n]`` will be displaced (rolled) | |
| by ``factor * n`` | |
| This is primarily useful for converting between lag and recurrence | |
| representations: shearing with ``factor=-1`` converts the main diagonal | |
| to a horizontal. Shearing with ``factor=1`` converts a horizontal to | |
| a diagonal. | |
| Parameters | |
| ---------- | |
| X : np.ndarray [ndim=2] or scipy.sparse matrix | |
| The array to be sheared | |
| factor : integer | |
| The shear factor: ``X[:, n] -> np.roll(X[:, n], factor * n)`` | |
| axis : integer | |
| The axis along which to shear | |
| Returns | |
| ------- | |
| X_shear : same type as ``X`` | |
| The sheared matrix | |
| Examples | |
| -------- | |
| >>> E = np.eye(3) | |
| >>> librosa.util.shear(E, factor=-1, axis=-1) | |
| array([[1., 1., 1.], | |
| [0., 0., 0.], | |
| [0., 0., 0.]]) | |
| >>> librosa.util.shear(E, factor=-1, axis=0) | |
| array([[1., 0., 0.], | |
| [1., 0., 0.], | |
| [1., 0., 0.]]) | |
| >>> librosa.util.shear(E, factor=1, axis=-1) | |
| array([[1., 0., 0.], | |
| [0., 0., 1.], | |
| [0., 1., 0.]]) | |
| """ | |
| if not np.issubdtype(type(factor), np.integer): | |
| raise ParameterError(f"factor={factor} must be integer-valued") | |
| # Suppress type checks because mypy doesn't like numba jitting | |
| # or scipy sparse conversion | |
| if scipy.sparse.isspmatrix(X): | |
| return __shear_sparse(X, factor=factor, axis=axis) # type: ignore | |
| else: | |
| return __shear_dense(X, factor=factor, axis=axis) # type: ignore | |
| def stack(arrays: List[np.ndarray], *, axis: int = 0) -> np.ndarray: | |
| """Stack one or more arrays along a target axis. | |
| This function is similar to `np.stack`, except that memory contiguity is | |
| retained when stacking along the first dimension. | |
| This is useful when combining multiple monophonic audio signals into a | |
| multi-channel signal, or when stacking multiple feature representations | |
| to form a multi-dimensional array. | |
| Parameters | |
| ---------- | |
| arrays : list | |
| one or more `np.ndarray` | |
| axis : integer | |
| The target axis along which to stack. ``axis=0`` creates a new first axis, | |
| and ``axis=-1`` creates a new last axis. | |
| Returns | |
| ------- | |
| arr_stack : np.ndarray [shape=(len(arrays), array_shape) or shape=(array_shape, len(arrays))] | |
| The input arrays, stacked along the target dimension. | |
| If ``axis=0``, then ``arr_stack`` will be F-contiguous. | |
| Otherwise, ``arr_stack`` will be C-contiguous by default, as computed by | |
| `np.stack`. | |
| Raises | |
| ------ | |
| ParameterError | |
| - If ``arrays`` do not all have the same shape | |
| - If no ``arrays`` are given | |
| See Also | |
| -------- | |
| numpy.stack | |
| numpy.ndarray.flags | |
| frame | |
| Examples | |
| -------- | |
| Combine two buffers into a contiguous arrays | |
| >>> y_left = np.ones(5) | |
| >>> y_right = -np.ones(5) | |
| >>> y_stereo = librosa.util.stack([y_left, y_right], axis=0) | |
| >>> y_stereo | |
| array([[ 1., 1., 1., 1., 1.], | |
| [-1., -1., -1., -1., -1.]]) | |
| >>> y_stereo.flags | |
| C_CONTIGUOUS : False | |
| F_CONTIGUOUS : True | |
| OWNDATA : True | |
| WRITEABLE : True | |
| ALIGNED : True | |
| WRITEBACKIFCOPY : False | |
| UPDATEIFCOPY : False | |
| Or along the trailing axis | |
| >>> y_stereo = librosa.util.stack([y_left, y_right], axis=-1) | |
| >>> y_stereo | |
| array([[ 1., -1.], | |
| [ 1., -1.], | |
| [ 1., -1.], | |
| [ 1., -1.], | |
| [ 1., -1.]]) | |
| >>> y_stereo.flags | |
| C_CONTIGUOUS : True | |
| F_CONTIGUOUS : False | |
| OWNDATA : True | |
| WRITEABLE : True | |
| ALIGNED : True | |
| WRITEBACKIFCOPY : False | |
| UPDATEIFCOPY : False | |
| """ | |
| shapes = {arr.shape for arr in arrays} | |
| if len(shapes) > 1: | |
| raise ParameterError("all input arrays must have the same shape") | |
| elif len(shapes) < 1: | |
| raise ParameterError("at least one input array must be provided for stack") | |
| shape_in = shapes.pop() | |
| if axis != 0: | |
| return np.stack(arrays, axis=axis) | |
| else: | |
| # If axis is 0, enforce F-ordering | |
| shape = tuple([len(arrays)] + list(shape_in)) | |
| # Find the common dtype for all inputs | |
| dtype = np.find_common_type([arr.dtype for arr in arrays], []) | |
| # Allocate an empty array of the right shape and type | |
| result = np.empty(shape, dtype=dtype, order="F") | |
| # Stack into the preallocated buffer | |
| np.stack(arrays, axis=axis, out=result) | |
| return result | |
| def dtype_r2c(d: DTypeLike, *, default: Optional[type] = np.complex64) -> DTypeLike: | |
| """Find the complex numpy dtype corresponding to a real dtype. | |
| This is used to maintain numerical precision and memory footprint | |
| when constructing complex arrays from real-valued data | |
| (e.g. in a Fourier transform). | |
| A `float32` (single-precision) type maps to `complex64`, | |
| while a `float64` (double-precision) maps to `complex128`. | |
| Parameters | |
| ---------- | |
| d : np.dtype | |
| The real-valued dtype to convert to complex. | |
| If ``d`` is a complex type already, it will be returned. | |
| default : np.dtype, optional | |
| The default complex target type, if ``d`` does not match a | |
| known dtype | |
| Returns | |
| ------- | |
| d_c : np.dtype | |
| The complex dtype | |
| See Also | |
| -------- | |
| dtype_c2r | |
| numpy.dtype | |
| Examples | |
| -------- | |
| >>> librosa.util.dtype_r2c(np.float32) | |
| dtype('complex64') | |
| >>> librosa.util.dtype_r2c(np.int16) | |
| dtype('complex64') | |
| >>> librosa.util.dtype_r2c(np.complex128) | |
| dtype('complex128') | |
| """ | |
| mapping: Dict[DTypeLike, type] = { | |
| np.dtype(np.float32): np.complex64, | |
| np.dtype(np.float64): np.complex128, | |
| np.dtype(float): np.dtype(complex).type, | |
| } | |
| # If we're given a complex type already, return it | |
| dt = np.dtype(d) | |
| if dt.kind == "c": | |
| return dt | |
| # Otherwise, try to map the dtype. | |
| # If no match is found, return the default. | |
| return np.dtype(mapping.get(dt, default)) | |
| def dtype_c2r(d: DTypeLike, *, default: Optional[type] = np.float32) -> DTypeLike: | |
| """Find the real numpy dtype corresponding to a complex dtype. | |
| This is used to maintain numerical precision and memory footprint | |
| when constructing real arrays from complex-valued data | |
| (e.g. in an inverse Fourier transform). | |
| A `complex64` (single-precision) type maps to `float32`, | |
| while a `complex128` (double-precision) maps to `float64`. | |
| Parameters | |
| ---------- | |
| d : np.dtype | |
| The complex-valued dtype to convert to real. | |
| If ``d`` is a real (float) type already, it will be returned. | |
| default : np.dtype, optional | |
| The default real target type, if ``d`` does not match a | |
| known dtype | |
| Returns | |
| ------- | |
| d_r : np.dtype | |
| The real dtype | |
| See Also | |
| -------- | |
| dtype_r2c | |
| numpy.dtype | |
| Examples | |
| -------- | |
| >>> librosa.util.dtype_r2c(np.complex64) | |
| dtype('float32') | |
| >>> librosa.util.dtype_r2c(np.float32) | |
| dtype('float32') | |
| >>> librosa.util.dtype_r2c(np.int16) | |
| dtype('float32') | |
| >>> librosa.util.dtype_r2c(np.complex128) | |
| dtype('float64') | |
| """ | |
| mapping: Dict[DTypeLike, type] = { | |
| np.dtype(np.complex64): np.float32, | |
| np.dtype(np.complex128): np.float64, | |
| np.dtype(complex): np.dtype(float).type, | |
| } | |
| # If we're given a real type already, return it | |
| dt = np.dtype(d) | |
| if dt.kind == "f": | |
| return dt | |
| # Otherwise, try to map the dtype. | |
| # If no match is found, return the default. | |
| return np.dtype(mapping.get(dt, default)) | |
| def __count_unique(x): | |
| """Counts the number of unique values in an array. | |
| This function is a helper for `count_unique` and is not | |
| to be called directly. | |
| """ | |
| uniques = np.unique(x) | |
| return uniques.shape[0] | |
| def count_unique(data: np.ndarray, *, axis: int = -1) -> np.ndarray: | |
| """Count the number of unique values in a multi-dimensional array | |
| along a given axis. | |
| Parameters | |
| ---------- | |
| data : np.ndarray | |
| The input array | |
| axis : int | |
| The target axis to count | |
| Returns | |
| ------- | |
| n_uniques | |
| The number of unique values. | |
| This array will have one fewer dimension than the input. | |
| See Also | |
| -------- | |
| is_unique | |
| Examples | |
| -------- | |
| >>> x = np.vander(np.arange(5)) | |
| >>> x | |
| array([[ 0, 0, 0, 0, 1], | |
| [ 1, 1, 1, 1, 1], | |
| [ 16, 8, 4, 2, 1], | |
| [ 81, 27, 9, 3, 1], | |
| [256, 64, 16, 4, 1]]) | |
| >>> # Count unique values along rows (within columns) | |
| >>> librosa.util.count_unique(x, axis=0) | |
| array([5, 5, 5, 5, 1]) | |
| >>> # Count unique values along columns (within rows) | |
| >>> librosa.util.count_unique(x, axis=-1) | |
| array([2, 1, 5, 5, 5]) | |
| """ | |
| return np.apply_along_axis(__count_unique, axis, data) | |
| def __is_unique(x): | |
| """Determines if the input array has all unique values. | |
| This function is a helper for `is_unique` and is not | |
| to be called directly. | |
| """ | |
| uniques = np.unique(x) | |
| return uniques.shape[0] == x.size | |
| def is_unique(data: np.ndarray, *, axis: int = -1) -> np.ndarray: | |
| """Determine if the input array consists of all unique values | |
| along a given axis. | |
| Parameters | |
| ---------- | |
| data : np.ndarray | |
| The input array | |
| axis : int | |
| The target axis | |
| Returns | |
| ------- | |
| is_unique | |
| Array of booleans indicating whether the data is unique along the chosen | |
| axis. | |
| This array will have one fewer dimension than the input. | |
| See Also | |
| -------- | |
| count_unique | |
| Examples | |
| -------- | |
| >>> x = np.vander(np.arange(5)) | |
| >>> x | |
| array([[ 0, 0, 0, 0, 1], | |
| [ 1, 1, 1, 1, 1], | |
| [ 16, 8, 4, 2, 1], | |
| [ 81, 27, 9, 3, 1], | |
| [256, 64, 16, 4, 1]]) | |
| >>> # Check uniqueness along rows | |
| >>> librosa.util.is_unique(x, axis=0) | |
| array([ True, True, True, True, False]) | |
| >>> # Check uniqueness along columns | |
| >>> librosa.util.is_unique(x, axis=-1) | |
| array([False, False, True, True, True]) | |
| """ | |
| return np.apply_along_axis(__is_unique, axis, data) | |
| # type: ignore | |
| def _cabs2(x: _ComplexLike_co) -> _FloatLike_co: # pragma: no cover | |
| """Helper function for efficiently computing abs2 on complex inputs""" | |
| return x.real**2 + x.imag**2 | |
| _Number = Union[complex, "np.number[Any]"] | |
| _NumberOrArray = TypeVar("_NumberOrArray", bound=Union[_Number, np.ndarray]) | |
| def abs2(x: _NumberOrArray, dtype: Optional[DTypeLike] = None) -> _NumberOrArray: | |
| """Compute the squared magnitude of a real or complex array. | |
| This function is equivalent to calling `np.abs(x)**2` but it | |
| is slightly more efficient. | |
| Parameters | |
| ---------- | |
| x : np.ndarray or scalar, real or complex typed | |
| The input data, either real (float32, float64) or complex (complex64, complex128) typed | |
| dtype : np.dtype, optional | |
| The data type of the output array. | |
| If not provided, it will be inferred from `x` | |
| Returns | |
| ------- | |
| p : np.ndarray or scale, real | |
| squared magnitude of `x` | |
| Examples | |
| -------- | |
| >>> librosa.util.abs2(3 + 4j) | |
| 25.0 | |
| >>> librosa.util.abs2((0.5j)**np.arange(8)) | |
| array([1.000e+00, 2.500e-01, 6.250e-02, 1.562e-02, 3.906e-03, 9.766e-04, | |
| 2.441e-04, 6.104e-05]) | |
| """ | |
| if np.iscomplexobj(x): | |
| # suppress type check, mypy doesn't like vectorization | |
| y = _cabs2(x) | |
| if dtype is None: | |
| return y # type: ignore | |
| else: | |
| return y.astype(dtype) # type: ignore | |
| else: | |
| # suppress type check, mypy doesn't know this is real | |
| return np.power(x, 2, dtype=dtype) # type: ignore | |
| # type: ignore | |
| def _phasor_angles(x) -> np.complex_: # pragma: no cover | |
| return np.cos(x) + 1j * np.sin(x) # type: ignore | |
| _Real = Union[float, "np.integer[Any]", "np.floating[Any]"] | |
| def phasor(angles: np.ndarray, *, mag: Optional[np.ndarray] = ...) -> np.ndarray: | |
| ... | |
| def phasor(angles: _Real, *, mag: Optional[_Number] = ...) -> np.complex_: | |
| ... | |
| def phasor( | |
| angles: Union[np.ndarray, _Real], | |
| *, | |
| mag: Optional[Union[np.ndarray, _Number]] = None, | |
| ) -> Union[np.ndarray, np.complex_]: | |
| """Construct a complex phasor representation from angles. | |
| When `mag` is not provided, this is equivalent to: | |
| z = np.cos(angles) + 1j * np.sin(angles) | |
| or by Euler's formula: | |
| z = np.exp(1j * angles) | |
| When `mag` is provided, this is equivalent to: | |
| z = mag * np.exp(1j * angles) | |
| This function should be more efficient (in time and memory) than the equivalent' | |
| formulations above, but produce numerically identical results. | |
| Parameters | |
| ---------- | |
| angles : np.ndarray or scalar, real-valued | |
| Angle(s), measured in radians | |
| mag : np.ndarray or scalar, optional | |
| If provided, phasor(s) will be scaled by `mag`. | |
| If not provided (default), phasors will have unit magnitude. | |
| `mag` must be of compatible shape to multiply with `angles`. | |
| Returns | |
| ------- | |
| z : np.ndarray or scalar, complex-valued | |
| Complex number(s) z corresponding to the given angle(s) | |
| and optional magnitude(s). | |
| Examples | |
| -------- | |
| Construct unit phasors at angles 0, pi/2, and pi: | |
| >>> librosa.util.phasor([0, np.pi/2, np.pi]) | |
| array([ 1.000e+00+0.000e+00j, 6.123e-17+1.000e+00j, | |
| -1.000e+00+1.225e-16j]) | |
| Construct a phasor with magnitude 1/2: | |
| >>> librosa.util.phasor(np.pi/2, mag=0.5) | |
| (3.061616997868383e-17+0.5j) | |
| Or arrays of angles and magnitudes: | |
| >>> librosa.util.phasor(np.array([0, np.pi/2]), mag=np.array([0.5, 1.5])) | |
| array([5.000e-01+0.j , 9.185e-17+1.5j]) | |
| """ | |
| z = _phasor_angles(angles) | |
| if mag is not None: | |
| z *= mag | |
| return z # type: ignore | |