Spaces:
Configuration error
Configuration error
fix build issue and env
Browse files- Dockerfile +3 -1
- matching.py +385 -0
- spectrum.py +0 -0
- utils/utils.py +2609 -0
Dockerfile
CHANGED
|
@@ -30,7 +30,9 @@ COPY constantq.py /usr/local/lib/python3.10/site-packages/librosa/core/constantq
|
|
| 30 |
COPY filters.py /usr/local/lib/python3.10/site-packages/librosa/filters.py
|
| 31 |
COPY sequence.py /usr/local/lib/python3.10/site-packages/librosa/sequence.py
|
| 32 |
COPY utils.py /usr/local/lib/python3.10/site-packages/librosa/feature/utils.py
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
# RUN cd /tmp && mkdir cache1
|
| 35 |
|
| 36 |
ENV NUMBA_CACHE_DIR=/tmp
|
|
|
|
| 30 |
COPY filters.py /usr/local/lib/python3.10/site-packages/librosa/filters.py
|
| 31 |
COPY sequence.py /usr/local/lib/python3.10/site-packages/librosa/sequence.py
|
| 32 |
COPY utils.py /usr/local/lib/python3.10/site-packages/librosa/feature/utils.py
|
| 33 |
+
COPY utils/utils.py /usr/local/lib/python3.10/site-packages/librosa/util/utils.py
|
| 34 |
+
COPY matching.py /usr/local/lib/python3.10/site-packages/librosa/util/matching.py
|
| 35 |
+
COPY spectrum.py /usr/local/lib/python3.10/site-packages/librosa/core/spectrum.py
|
| 36 |
# RUN cd /tmp && mkdir cache1
|
| 37 |
|
| 38 |
ENV NUMBA_CACHE_DIR=/tmp
|
matching.py
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
#!/usr/bin/env python
|
| 4 |
+
# -*- coding: utf-8 -*-
|
| 5 |
+
"""Matching functions"""
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import numba
|
| 9 |
+
|
| 10 |
+
from .exceptions import ParameterError
|
| 11 |
+
from .utils import valid_intervals
|
| 12 |
+
from .._typing import _SequenceLike
|
| 13 |
+
|
| 14 |
+
__all__ = ["match_intervals", "match_events"]
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@numba.jit(nopython=True, cache=False) # type: ignore
|
| 18 |
+
def __jaccard(int_a: np.ndarray, int_b: np.ndarray): # pragma: no cover
|
| 19 |
+
"""Jaccard similarity between two intervals
|
| 20 |
+
|
| 21 |
+
Parameters
|
| 22 |
+
----------
|
| 23 |
+
int_a, int_b : np.ndarrays, shape=(2,)
|
| 24 |
+
|
| 25 |
+
Returns
|
| 26 |
+
-------
|
| 27 |
+
Jaccard similarity between intervals
|
| 28 |
+
"""
|
| 29 |
+
ends = [int_a[1], int_b[1]]
|
| 30 |
+
if ends[1] < ends[0]:
|
| 31 |
+
ends.reverse()
|
| 32 |
+
|
| 33 |
+
starts = [int_a[0], int_b[0]]
|
| 34 |
+
if starts[1] < starts[0]:
|
| 35 |
+
starts.reverse()
|
| 36 |
+
|
| 37 |
+
intersection = ends[0] - starts[1]
|
| 38 |
+
if intersection < 0:
|
| 39 |
+
intersection = 0.0
|
| 40 |
+
|
| 41 |
+
union = ends[1] - starts[0]
|
| 42 |
+
|
| 43 |
+
if union > 0:
|
| 44 |
+
return intersection / union
|
| 45 |
+
|
| 46 |
+
return 0.0
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
@numba.jit(nopython=True, cache=False)
|
| 50 |
+
def __match_interval_overlaps(query, intervals_to, candidates): # pragma: no cover
|
| 51 |
+
"""Find the best Jaccard match from query to candidates"""
|
| 52 |
+
|
| 53 |
+
best_score = -1
|
| 54 |
+
best_idx = -1
|
| 55 |
+
for idx in candidates:
|
| 56 |
+
score = __jaccard(query, intervals_to[idx])
|
| 57 |
+
|
| 58 |
+
if score > best_score:
|
| 59 |
+
best_score, best_idx = score, idx
|
| 60 |
+
return best_idx
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@numba.jit(nopython=True, cache=False) # type: ignore
|
| 64 |
+
def __match_intervals(
|
| 65 |
+
intervals_from: np.ndarray, intervals_to: np.ndarray, strict: bool = True
|
| 66 |
+
) -> np.ndarray: # pragma: no cover
|
| 67 |
+
"""Numba-accelerated interval matching algorithm."""
|
| 68 |
+
# sort index of the interval starts
|
| 69 |
+
start_index = np.argsort(intervals_to[:, 0])
|
| 70 |
+
|
| 71 |
+
# sort index of the interval ends
|
| 72 |
+
end_index = np.argsort(intervals_to[:, 1])
|
| 73 |
+
|
| 74 |
+
# and sorted values of starts
|
| 75 |
+
start_sorted = intervals_to[start_index, 0]
|
| 76 |
+
# and ends
|
| 77 |
+
end_sorted = intervals_to[end_index, 1]
|
| 78 |
+
|
| 79 |
+
search_ends = np.searchsorted(start_sorted, intervals_from[:, 1], side="right")
|
| 80 |
+
search_starts = np.searchsorted(end_sorted, intervals_from[:, 0], side="left")
|
| 81 |
+
|
| 82 |
+
output = np.empty(len(intervals_from), dtype=numba.uint32)
|
| 83 |
+
for i in range(len(intervals_from)):
|
| 84 |
+
query = intervals_from[i]
|
| 85 |
+
|
| 86 |
+
# Find the intervals that start after our query ends
|
| 87 |
+
after_query = search_ends[i]
|
| 88 |
+
# And the intervals that end after our query begins
|
| 89 |
+
before_query = search_starts[i]
|
| 90 |
+
|
| 91 |
+
# Candidates for overlapping have to (end after we start) and (begin before we end)
|
| 92 |
+
candidates = set(start_index[:after_query]) & set(end_index[before_query:])
|
| 93 |
+
|
| 94 |
+
# Proceed as before
|
| 95 |
+
if len(candidates) > 0:
|
| 96 |
+
output[i] = __match_interval_overlaps(query, intervals_to, candidates)
|
| 97 |
+
elif strict:
|
| 98 |
+
# Numba only lets us use compile-time constants in exception messages
|
| 99 |
+
raise ParameterError
|
| 100 |
+
else:
|
| 101 |
+
# Find the closest interval
|
| 102 |
+
# (start_index[after_query] - query[1]) is the distance to the next interval
|
| 103 |
+
# (query[0] - end_index[before_query])
|
| 104 |
+
dist_before = np.inf
|
| 105 |
+
dist_after = np.inf
|
| 106 |
+
if search_starts[i] > 0:
|
| 107 |
+
dist_before = query[0] - end_sorted[search_starts[i] - 1]
|
| 108 |
+
if search_ends[i] + 1 < len(intervals_to):
|
| 109 |
+
dist_after = start_sorted[search_ends[i] + 1] - query[1]
|
| 110 |
+
if dist_before < dist_after:
|
| 111 |
+
output[i] = end_index[search_starts[i] - 1]
|
| 112 |
+
else:
|
| 113 |
+
output[i] = start_index[search_ends[i] + 1]
|
| 114 |
+
return output
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def match_intervals(
|
| 118 |
+
intervals_from: np.ndarray, intervals_to: np.ndarray, strict: bool = True
|
| 119 |
+
) -> np.ndarray:
|
| 120 |
+
"""Match one set of time intervals to another.
|
| 121 |
+
|
| 122 |
+
This can be useful for tasks such as mapping beat timings
|
| 123 |
+
to segments.
|
| 124 |
+
|
| 125 |
+
Each element ``[a, b]`` of ``intervals_from`` is matched to the
|
| 126 |
+
element ``[c, d]`` of ``intervals_to`` which maximizes the
|
| 127 |
+
Jaccard similarity between the intervals::
|
| 128 |
+
|
| 129 |
+
max(0, |min(b, d) - max(a, c)|) / |max(d, b) - min(a, c)|
|
| 130 |
+
|
| 131 |
+
In ``strict=True`` mode, if there is no interval with positive
|
| 132 |
+
intersection with ``[a,b]``, an exception is thrown.
|
| 133 |
+
|
| 134 |
+
In ``strict=False`` mode, any interval ``[a, b]`` that has no
|
| 135 |
+
intersection with any element of ``intervals_to`` is instead
|
| 136 |
+
matched to the interval ``[c, d]`` which minimizes::
|
| 137 |
+
|
| 138 |
+
min(|b - c|, |a - d|)
|
| 139 |
+
|
| 140 |
+
that is, the disjoint interval [c, d] with a boundary closest
|
| 141 |
+
to [a, b].
|
| 142 |
+
|
| 143 |
+
.. note:: An element of ``intervals_to`` may be matched to multiple
|
| 144 |
+
entries of ``intervals_from``.
|
| 145 |
+
|
| 146 |
+
Parameters
|
| 147 |
+
----------
|
| 148 |
+
intervals_from : np.ndarray [shape=(n, 2)]
|
| 149 |
+
The time range for source intervals.
|
| 150 |
+
The ``i`` th interval spans time ``intervals_from[i, 0]``
|
| 151 |
+
to ``intervals_from[i, 1]``.
|
| 152 |
+
``intervals_from[0, 0]`` should be 0, ``intervals_from[-1, 1]``
|
| 153 |
+
should be the track duration.
|
| 154 |
+
intervals_to : np.ndarray [shape=(m, 2)]
|
| 155 |
+
Analogous to ``intervals_from``.
|
| 156 |
+
strict : bool
|
| 157 |
+
If ``True``, intervals can only match if they intersect.
|
| 158 |
+
If ``False``, disjoint intervals can match.
|
| 159 |
+
|
| 160 |
+
Returns
|
| 161 |
+
-------
|
| 162 |
+
interval_mapping : np.ndarray [shape=(n,)]
|
| 163 |
+
For each interval in ``intervals_from``, the
|
| 164 |
+
corresponding interval in ``intervals_to``.
|
| 165 |
+
|
| 166 |
+
See Also
|
| 167 |
+
--------
|
| 168 |
+
match_events
|
| 169 |
+
|
| 170 |
+
Raises
|
| 171 |
+
------
|
| 172 |
+
ParameterError
|
| 173 |
+
If either array of input intervals is not the correct shape
|
| 174 |
+
|
| 175 |
+
If ``strict=True`` and some element of ``intervals_from`` is disjoint from
|
| 176 |
+
every element of ``intervals_to``.
|
| 177 |
+
|
| 178 |
+
Examples
|
| 179 |
+
--------
|
| 180 |
+
>>> ints_from = np.array([[3, 5], [1, 4], [4, 5]])
|
| 181 |
+
>>> ints_to = np.array([[0, 2], [1, 3], [4, 5], [6, 7]])
|
| 182 |
+
>>> librosa.util.match_intervals(ints_from, ints_to)
|
| 183 |
+
array([2, 1, 2], dtype=uint32)
|
| 184 |
+
>>> # [3, 5] => [4, 5] (ints_to[2])
|
| 185 |
+
>>> # [1, 4] => [1, 3] (ints_to[1])
|
| 186 |
+
>>> # [4, 5] => [4, 5] (ints_to[2])
|
| 187 |
+
|
| 188 |
+
The reverse matching of the above is not possible in ``strict`` mode
|
| 189 |
+
because ``[6, 7]`` is disjoint from all intervals in ``ints_from``.
|
| 190 |
+
With ``strict=False``, we get the following:
|
| 191 |
+
|
| 192 |
+
>>> librosa.util.match_intervals(ints_to, ints_from, strict=False)
|
| 193 |
+
array([1, 1, 2, 2], dtype=uint32)
|
| 194 |
+
>>> # [0, 2] => [1, 4] (ints_from[1])
|
| 195 |
+
>>> # [1, 3] => [1, 4] (ints_from[1])
|
| 196 |
+
>>> # [4, 5] => [4, 5] (ints_from[2])
|
| 197 |
+
>>> # [6, 7] => [4, 5] (ints_from[2])
|
| 198 |
+
"""
|
| 199 |
+
|
| 200 |
+
if len(intervals_from) == 0 or len(intervals_to) == 0:
|
| 201 |
+
raise ParameterError("Attempting to match empty interval list")
|
| 202 |
+
|
| 203 |
+
# Verify that the input intervals has correct shape and size
|
| 204 |
+
valid_intervals(intervals_from)
|
| 205 |
+
valid_intervals(intervals_to)
|
| 206 |
+
|
| 207 |
+
try:
|
| 208 |
+
# Suppress type check because of numba wrapper
|
| 209 |
+
return __match_intervals(intervals_from, intervals_to, strict=strict) # type: ignore
|
| 210 |
+
except ParameterError as exc:
|
| 211 |
+
raise ParameterError(f"Unable to match intervals with strict={strict}") from exc
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def match_events(
|
| 215 |
+
events_from: _SequenceLike,
|
| 216 |
+
events_to: _SequenceLike,
|
| 217 |
+
left: bool = True,
|
| 218 |
+
right: bool = True,
|
| 219 |
+
) -> np.ndarray:
|
| 220 |
+
"""Match one set of events to another.
|
| 221 |
+
|
| 222 |
+
This is useful for tasks such as matching beats to the nearest
|
| 223 |
+
detected onsets, or frame-aligned events to the nearest zero-crossing.
|
| 224 |
+
|
| 225 |
+
.. note:: A target event may be matched to multiple source events.
|
| 226 |
+
|
| 227 |
+
Examples
|
| 228 |
+
--------
|
| 229 |
+
>>> # Sources are multiples of 7
|
| 230 |
+
>>> s_from = np.arange(0, 100, 7)
|
| 231 |
+
>>> s_from
|
| 232 |
+
array([ 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91,
|
| 233 |
+
98])
|
| 234 |
+
>>> # Targets are multiples of 10
|
| 235 |
+
>>> s_to = np.arange(0, 100, 10)
|
| 236 |
+
>>> s_to
|
| 237 |
+
array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])
|
| 238 |
+
>>> # Find the matching
|
| 239 |
+
>>> idx = librosa.util.match_events(s_from, s_to)
|
| 240 |
+
>>> idx
|
| 241 |
+
array([0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9])
|
| 242 |
+
>>> # Print each source value to its matching target
|
| 243 |
+
>>> zip(s_from, s_to[idx])
|
| 244 |
+
[(0, 0), (7, 10), (14, 10), (21, 20), (28, 30), (35, 30),
|
| 245 |
+
(42, 40), (49, 50), (56, 60), (63, 60), (70, 70), (77, 80),
|
| 246 |
+
(84, 80), (91, 90), (98, 90)]
|
| 247 |
+
|
| 248 |
+
Parameters
|
| 249 |
+
----------
|
| 250 |
+
events_from : ndarray [shape=(n,)]
|
| 251 |
+
Array of events (eg, times, sample or frame indices) to match from.
|
| 252 |
+
events_to : ndarray [shape=(m,)]
|
| 253 |
+
Array of events (eg, times, sample or frame indices) to
|
| 254 |
+
match against.
|
| 255 |
+
left : bool
|
| 256 |
+
right : bool
|
| 257 |
+
If ``False``, then matched events cannot be to the left (or right)
|
| 258 |
+
of source events.
|
| 259 |
+
|
| 260 |
+
Returns
|
| 261 |
+
-------
|
| 262 |
+
event_mapping : np.ndarray [shape=(n,)]
|
| 263 |
+
For each event in ``events_from``, the corresponding event
|
| 264 |
+
index in ``events_to``::
|
| 265 |
+
|
| 266 |
+
event_mapping[i] == arg min |events_from[i] - events_to[:]|
|
| 267 |
+
|
| 268 |
+
See Also
|
| 269 |
+
--------
|
| 270 |
+
match_intervals
|
| 271 |
+
|
| 272 |
+
Raises
|
| 273 |
+
------
|
| 274 |
+
ParameterError
|
| 275 |
+
If either array of input events is not the correct shape
|
| 276 |
+
"""
|
| 277 |
+
if len(events_from) == 0 or len(events_to) == 0:
|
| 278 |
+
raise ParameterError("Attempting to match empty event list")
|
| 279 |
+
|
| 280 |
+
# If we can't match left or right, then only strict equivalence
|
| 281 |
+
# counts as a match.
|
| 282 |
+
if not (left or right) and not np.all(np.in1d(events_from, events_to)):
|
| 283 |
+
raise ParameterError(
|
| 284 |
+
"Cannot match events with left=right=False "
|
| 285 |
+
"and events_from is not contained "
|
| 286 |
+
"in events_to"
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
# If we can't match to the left, then there should be at least one
|
| 290 |
+
# target event greater-equal to every source event
|
| 291 |
+
if (not left) and max(events_to) < max(events_from):
|
| 292 |
+
raise ParameterError(
|
| 293 |
+
"Cannot match events with left=False "
|
| 294 |
+
"and max(events_to) < max(events_from)"
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# If we can't match to the right, then there should be at least one
|
| 298 |
+
# target event less-equal to every source event
|
| 299 |
+
if (not right) and min(events_to) > min(events_from):
|
| 300 |
+
raise ParameterError(
|
| 301 |
+
"Cannot match events with right=False "
|
| 302 |
+
"and min(events_to) > min(events_from)"
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
# array of matched items
|
| 306 |
+
output = np.empty_like(events_from, dtype=np.int32)
|
| 307 |
+
|
| 308 |
+
# Suppress type check because of numba
|
| 309 |
+
return __match_events_helper(output, events_from, events_to, left, right) # type: ignore
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
@numba.jit(nopython=True, cache=False) # type: ignore
|
| 313 |
+
def __match_events_helper(
|
| 314 |
+
output: np.ndarray,
|
| 315 |
+
events_from: np.ndarray,
|
| 316 |
+
events_to: np.ndarray,
|
| 317 |
+
left: bool = True,
|
| 318 |
+
right: bool = True,
|
| 319 |
+
): # pragma: no cover
|
| 320 |
+
# mock dictionary for events
|
| 321 |
+
from_idx = np.argsort(events_from)
|
| 322 |
+
sorted_from = events_from[from_idx]
|
| 323 |
+
|
| 324 |
+
to_idx = np.argsort(events_to)
|
| 325 |
+
sorted_to = events_to[to_idx]
|
| 326 |
+
|
| 327 |
+
# find the matching indices
|
| 328 |
+
matching_indices = np.searchsorted(sorted_to, sorted_from)
|
| 329 |
+
|
| 330 |
+
# iterate over indices in matching_indices
|
| 331 |
+
for ind, middle_ind in enumerate(matching_indices):
|
| 332 |
+
left_flag = False
|
| 333 |
+
right_flag = False
|
| 334 |
+
|
| 335 |
+
left_ind = -1
|
| 336 |
+
right_ind = len(matching_indices)
|
| 337 |
+
|
| 338 |
+
left_diff = 0
|
| 339 |
+
right_diff = 0
|
| 340 |
+
mid_diff = 0
|
| 341 |
+
|
| 342 |
+
middle_ind = matching_indices[ind]
|
| 343 |
+
sorted_from_num = sorted_from[ind]
|
| 344 |
+
|
| 345 |
+
# Prevent oob from chosen index
|
| 346 |
+
if middle_ind == len(sorted_to):
|
| 347 |
+
middle_ind -= 1
|
| 348 |
+
|
| 349 |
+
# Permitted to look to the left
|
| 350 |
+
if left and middle_ind > 0:
|
| 351 |
+
left_ind = middle_ind - 1
|
| 352 |
+
left_flag = True
|
| 353 |
+
|
| 354 |
+
# Permitted to look to right
|
| 355 |
+
if right and middle_ind < len(sorted_to) - 1:
|
| 356 |
+
right_ind = middle_ind + 1
|
| 357 |
+
right_flag = True
|
| 358 |
+
|
| 359 |
+
mid_diff = abs(sorted_to[middle_ind] - sorted_from_num)
|
| 360 |
+
if left and left_flag:
|
| 361 |
+
left_diff = abs(sorted_to[left_ind] - sorted_from_num)
|
| 362 |
+
if right and right_flag:
|
| 363 |
+
right_diff = abs(sorted_to[right_ind] - sorted_from_num)
|
| 364 |
+
|
| 365 |
+
if left_flag and (
|
| 366 |
+
not right
|
| 367 |
+
and (sorted_to[middle_ind] > sorted_from_num)
|
| 368 |
+
or (not right_flag and left_diff < mid_diff)
|
| 369 |
+
or (left_diff < right_diff and left_diff < mid_diff)
|
| 370 |
+
):
|
| 371 |
+
output[ind] = to_idx[left_ind]
|
| 372 |
+
|
| 373 |
+
# Check if right should be chosen
|
| 374 |
+
elif right_flag and (right_diff < mid_diff):
|
| 375 |
+
output[ind] = to_idx[right_ind]
|
| 376 |
+
|
| 377 |
+
# Selected index wins
|
| 378 |
+
else:
|
| 379 |
+
output[ind] = to_idx[middle_ind]
|
| 380 |
+
|
| 381 |
+
# Undo sorting
|
| 382 |
+
solutions = np.empty_like(output)
|
| 383 |
+
solutions[from_idx] = output
|
| 384 |
+
|
| 385 |
+
return solutions
|
spectrum.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
utils/utils.py
ADDED
|
@@ -0,0 +1,2609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
#!/usr/bin/env python
|
| 4 |
+
# -*- coding: utf-8 -*-
|
| 5 |
+
"""Utility functions"""
|
| 6 |
+
|
| 7 |
+
from __future__ import annotations
|
| 8 |
+
|
| 9 |
+
import scipy.ndimage
|
| 10 |
+
import scipy.sparse
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
import numba
|
| 14 |
+
from numpy.lib.stride_tricks import as_strided
|
| 15 |
+
|
| 16 |
+
from .._cache import cache
|
| 17 |
+
from .exceptions import ParameterError
|
| 18 |
+
from .deprecation import Deprecated
|
| 19 |
+
from numpy.typing import ArrayLike, DTypeLike
|
| 20 |
+
from typing import (
|
| 21 |
+
Any,
|
| 22 |
+
Callable,
|
| 23 |
+
Iterable,
|
| 24 |
+
List,
|
| 25 |
+
Dict,
|
| 26 |
+
Optional,
|
| 27 |
+
Sequence,
|
| 28 |
+
Tuple,
|
| 29 |
+
TypeVar,
|
| 30 |
+
Union,
|
| 31 |
+
overload,
|
| 32 |
+
)
|
| 33 |
+
from typing_extensions import Literal
|
| 34 |
+
from .._typing import _SequenceLike, _FloatLike_co, _ComplexLike_co
|
| 35 |
+
|
| 36 |
+
# Constrain STFT block sizes to 256 KB
|
| 37 |
+
MAX_MEM_BLOCK = 2**8 * 2**10
|
| 38 |
+
|
| 39 |
+
__all__ = [
|
| 40 |
+
"MAX_MEM_BLOCK",
|
| 41 |
+
"frame",
|
| 42 |
+
"pad_center",
|
| 43 |
+
"expand_to",
|
| 44 |
+
"fix_length",
|
| 45 |
+
"valid_audio",
|
| 46 |
+
"valid_int",
|
| 47 |
+
"is_positive_int",
|
| 48 |
+
"valid_intervals",
|
| 49 |
+
"fix_frames",
|
| 50 |
+
"axis_sort",
|
| 51 |
+
"localmax",
|
| 52 |
+
"localmin",
|
| 53 |
+
"normalize",
|
| 54 |
+
"peak_pick",
|
| 55 |
+
"sparsify_rows",
|
| 56 |
+
"shear",
|
| 57 |
+
"stack",
|
| 58 |
+
"fill_off_diagonal",
|
| 59 |
+
"index_to_slice",
|
| 60 |
+
"sync",
|
| 61 |
+
"softmask",
|
| 62 |
+
"buf_to_float",
|
| 63 |
+
"tiny",
|
| 64 |
+
"cyclic_gradient",
|
| 65 |
+
"dtype_r2c",
|
| 66 |
+
"dtype_c2r",
|
| 67 |
+
"count_unique",
|
| 68 |
+
"is_unique",
|
| 69 |
+
"abs2",
|
| 70 |
+
"phasor",
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def frame(
|
| 75 |
+
x: np.ndarray,
|
| 76 |
+
*,
|
| 77 |
+
frame_length: int,
|
| 78 |
+
hop_length: int,
|
| 79 |
+
axis: int = -1,
|
| 80 |
+
writeable: bool = False,
|
| 81 |
+
subok: bool = False,
|
| 82 |
+
) -> np.ndarray:
|
| 83 |
+
"""Slice a data array into (overlapping) frames.
|
| 84 |
+
|
| 85 |
+
This implementation uses low-level stride manipulation to avoid
|
| 86 |
+
making a copy of the data. The resulting frame representation
|
| 87 |
+
is a new view of the same input data.
|
| 88 |
+
|
| 89 |
+
For example, a one-dimensional input ``x = [0, 1, 2, 3, 4, 5, 6]``
|
| 90 |
+
can be framed with frame length 3 and hop length 2 in two ways.
|
| 91 |
+
The first (``axis=-1``), results in the array ``x_frames``::
|
| 92 |
+
|
| 93 |
+
[[0, 2, 4],
|
| 94 |
+
[1, 3, 5],
|
| 95 |
+
[2, 4, 6]]
|
| 96 |
+
|
| 97 |
+
where each column ``x_frames[:, i]`` contains a contiguous slice of
|
| 98 |
+
the input ``x[i * hop_length : i * hop_length + frame_length]``.
|
| 99 |
+
|
| 100 |
+
The second way (``axis=0``) results in the array ``x_frames``::
|
| 101 |
+
|
| 102 |
+
[[0, 1, 2],
|
| 103 |
+
[2, 3, 4],
|
| 104 |
+
[4, 5, 6]]
|
| 105 |
+
|
| 106 |
+
where each row ``x_frames[i]`` contains a contiguous slice of the input.
|
| 107 |
+
|
| 108 |
+
This generalizes to higher dimensional inputs, as shown in the examples below.
|
| 109 |
+
In general, the framing operation increments by 1 the number of dimensions,
|
| 110 |
+
adding a new "frame axis" either before the framing axis (if ``axis < 0``)
|
| 111 |
+
or after the framing axis (if ``axis >= 0``).
|
| 112 |
+
|
| 113 |
+
Parameters
|
| 114 |
+
----------
|
| 115 |
+
x : np.ndarray
|
| 116 |
+
Array to frame
|
| 117 |
+
frame_length : int > 0 [scalar]
|
| 118 |
+
Length of the frame
|
| 119 |
+
hop_length : int > 0 [scalar]
|
| 120 |
+
Number of steps to advance between frames
|
| 121 |
+
axis : int
|
| 122 |
+
The axis along which to frame.
|
| 123 |
+
writeable : bool
|
| 124 |
+
If ``True``, then the framed view of ``x`` is read-only.
|
| 125 |
+
If ``False``, then the framed view is read-write. Note that writing to the framed view
|
| 126 |
+
will also write to the input array ``x`` in this case.
|
| 127 |
+
subok : bool
|
| 128 |
+
If True, sub-classes will be passed-through, otherwise the returned array will be
|
| 129 |
+
forced to be a base-class array (default).
|
| 130 |
+
|
| 131 |
+
Returns
|
| 132 |
+
-------
|
| 133 |
+
x_frames : np.ndarray [shape=(..., frame_length, N_FRAMES, ...)]
|
| 134 |
+
A framed view of ``x``, for example with ``axis=-1`` (framing on the last dimension)::
|
| 135 |
+
|
| 136 |
+
x_frames[..., j] == x[..., j * hop_length : j * hop_length + frame_length]
|
| 137 |
+
|
| 138 |
+
If ``axis=0`` (framing on the first dimension), then::
|
| 139 |
+
|
| 140 |
+
x_frames[j] = x[j * hop_length : j * hop_length + frame_length]
|
| 141 |
+
|
| 142 |
+
Raises
|
| 143 |
+
------
|
| 144 |
+
ParameterError
|
| 145 |
+
If ``x.shape[axis] < frame_length``, there is not enough data to fill one frame.
|
| 146 |
+
|
| 147 |
+
If ``hop_length < 1``, frames cannot advance.
|
| 148 |
+
|
| 149 |
+
See Also
|
| 150 |
+
--------
|
| 151 |
+
numpy.lib.stride_tricks.as_strided
|
| 152 |
+
|
| 153 |
+
Examples
|
| 154 |
+
--------
|
| 155 |
+
Extract 2048-sample frames from monophonic signal with a hop of 64 samples per frame
|
| 156 |
+
|
| 157 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
| 158 |
+
>>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64)
|
| 159 |
+
>>> frames
|
| 160 |
+
array([[-1.407e-03, -2.604e-02, ..., -1.795e-05, -8.108e-06],
|
| 161 |
+
[-4.461e-04, -3.721e-02, ..., -1.573e-05, -1.652e-05],
|
| 162 |
+
...,
|
| 163 |
+
[ 7.960e-02, -2.335e-01, ..., -6.815e-06, 1.266e-05],
|
| 164 |
+
[ 9.568e-02, -1.252e-01, ..., 7.397e-06, -1.921e-05]],
|
| 165 |
+
dtype=float32)
|
| 166 |
+
>>> y.shape
|
| 167 |
+
(117601,)
|
| 168 |
+
|
| 169 |
+
>>> frames.shape
|
| 170 |
+
(2048, 1806)
|
| 171 |
+
|
| 172 |
+
Or frame along the first axis instead of the last:
|
| 173 |
+
|
| 174 |
+
>>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64, axis=0)
|
| 175 |
+
>>> frames.shape
|
| 176 |
+
(1806, 2048)
|
| 177 |
+
|
| 178 |
+
Frame a stereo signal:
|
| 179 |
+
|
| 180 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet', hq=True), mono=False)
|
| 181 |
+
>>> y.shape
|
| 182 |
+
(2, 117601)
|
| 183 |
+
>>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64)
|
| 184 |
+
(2, 2048, 1806)
|
| 185 |
+
|
| 186 |
+
Carve an STFT into fixed-length patches of 32 frames with 50% overlap
|
| 187 |
+
|
| 188 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
| 189 |
+
>>> S = np.abs(librosa.stft(y))
|
| 190 |
+
>>> S.shape
|
| 191 |
+
(1025, 230)
|
| 192 |
+
>>> S_patch = librosa.util.frame(S, frame_length=32, hop_length=16)
|
| 193 |
+
>>> S_patch.shape
|
| 194 |
+
(1025, 32, 13)
|
| 195 |
+
>>> # The first patch contains the first 32 frames of S
|
| 196 |
+
>>> np.allclose(S_patch[:, :, 0], S[:, :32])
|
| 197 |
+
True
|
| 198 |
+
>>> # The second patch contains frames 16 to 16+32=48, and so on
|
| 199 |
+
>>> np.allclose(S_patch[:, :, 1], S[:, 16:48])
|
| 200 |
+
True
|
| 201 |
+
"""
|
| 202 |
+
|
| 203 |
+
# This implementation is derived from numpy.lib.stride_tricks.sliding_window_view (1.20.0)
|
| 204 |
+
# https://numpy.org/doc/stable/reference/generated/numpy.lib.stride_tricks.sliding_window_view.html
|
| 205 |
+
|
| 206 |
+
x = np.array(x, copy=False, subok=subok)
|
| 207 |
+
|
| 208 |
+
if x.shape[axis] < frame_length:
|
| 209 |
+
raise ParameterError(
|
| 210 |
+
f"Input is too short (n={x.shape[axis]:d}) for frame_length={frame_length:d}"
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
if hop_length < 1:
|
| 214 |
+
raise ParameterError(f"Invalid hop_length: {hop_length:d}")
|
| 215 |
+
|
| 216 |
+
# put our new within-frame axis at the end for now
|
| 217 |
+
out_strides = x.strides + tuple([x.strides[axis]])
|
| 218 |
+
|
| 219 |
+
# Reduce the shape on the framing axis
|
| 220 |
+
x_shape_trimmed = list(x.shape)
|
| 221 |
+
x_shape_trimmed[axis] -= frame_length - 1
|
| 222 |
+
|
| 223 |
+
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
| 224 |
+
xw = as_strided(
|
| 225 |
+
x, strides=out_strides, shape=out_shape, subok=subok, writeable=writeable
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
if axis < 0:
|
| 229 |
+
target_axis = axis - 1
|
| 230 |
+
else:
|
| 231 |
+
target_axis = axis + 1
|
| 232 |
+
|
| 233 |
+
xw = np.moveaxis(xw, -1, target_axis)
|
| 234 |
+
|
| 235 |
+
# Downsample along the target axis
|
| 236 |
+
slices = [slice(None)] * xw.ndim
|
| 237 |
+
slices[axis] = slice(0, None, hop_length)
|
| 238 |
+
return xw[tuple(slices)]
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
@cache(level=20)
|
| 242 |
+
def valid_audio(y: np.ndarray, *, mono: Union[bool, Deprecated] = Deprecated()) -> bool:
|
| 243 |
+
"""Determine whether a variable contains valid audio data.
|
| 244 |
+
|
| 245 |
+
The following conditions must be satisfied:
|
| 246 |
+
|
| 247 |
+
- ``type(y)`` is ``np.ndarray``
|
| 248 |
+
- ``y.dtype`` is floating-point
|
| 249 |
+
- ``y.ndim != 0`` (must have at least one dimension)
|
| 250 |
+
- ``np.isfinite(y).all()`` samples must be all finite values
|
| 251 |
+
|
| 252 |
+
If ``mono`` is specified, then we additionally require
|
| 253 |
+
- ``y.ndim == 1``
|
| 254 |
+
|
| 255 |
+
Parameters
|
| 256 |
+
----------
|
| 257 |
+
y : np.ndarray
|
| 258 |
+
The input data to validate
|
| 259 |
+
|
| 260 |
+
mono : bool
|
| 261 |
+
Whether or not to require monophonic audio
|
| 262 |
+
|
| 263 |
+
.. warning:: The ``mono`` parameter is deprecated in version 0.9 and will be
|
| 264 |
+
removed in 0.10.
|
| 265 |
+
|
| 266 |
+
Returns
|
| 267 |
+
-------
|
| 268 |
+
valid : bool
|
| 269 |
+
True if all tests pass
|
| 270 |
+
|
| 271 |
+
Raises
|
| 272 |
+
------
|
| 273 |
+
ParameterError
|
| 274 |
+
In any of the conditions specified above fails
|
| 275 |
+
|
| 276 |
+
Notes
|
| 277 |
+
-----
|
| 278 |
+
This function caches at level 20.
|
| 279 |
+
|
| 280 |
+
Examples
|
| 281 |
+
--------
|
| 282 |
+
>>> # By default, valid_audio allows only mono signals
|
| 283 |
+
>>> filepath = librosa.ex('trumpet', hq=True)
|
| 284 |
+
>>> y_mono, sr = librosa.load(filepath, mono=True)
|
| 285 |
+
>>> y_stereo, _ = librosa.load(filepath, mono=False)
|
| 286 |
+
>>> librosa.util.valid_audio(y_mono), librosa.util.valid_audio(y_stereo)
|
| 287 |
+
True, False
|
| 288 |
+
|
| 289 |
+
>>> # To allow stereo signals, set mono=False
|
| 290 |
+
>>> librosa.util.valid_audio(y_stereo, mono=False)
|
| 291 |
+
True
|
| 292 |
+
|
| 293 |
+
See Also
|
| 294 |
+
--------
|
| 295 |
+
numpy.float32
|
| 296 |
+
"""
|
| 297 |
+
|
| 298 |
+
if not isinstance(y, np.ndarray):
|
| 299 |
+
raise ParameterError("Audio data must be of type numpy.ndarray")
|
| 300 |
+
|
| 301 |
+
if not np.issubdtype(y.dtype, np.floating):
|
| 302 |
+
raise ParameterError("Audio data must be floating-point")
|
| 303 |
+
|
| 304 |
+
if y.ndim == 0:
|
| 305 |
+
raise ParameterError(
|
| 306 |
+
f"Audio data must be at least one-dimensional, given y.shape={y.shape}"
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
if isinstance(mono, Deprecated):
|
| 310 |
+
mono = False
|
| 311 |
+
|
| 312 |
+
if mono and y.ndim != 1:
|
| 313 |
+
raise ParameterError(
|
| 314 |
+
f"Invalid shape for monophonic audio: ndim={y.ndim:d}, shape={y.shape}"
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
if not np.isfinite(y).all():
|
| 318 |
+
raise ParameterError("Audio buffer is not finite everywhere")
|
| 319 |
+
|
| 320 |
+
return True
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
def valid_int(x: float, *, cast: Optional[Callable[[float], float]] = None) -> int:
|
| 324 |
+
"""Ensure that an input value is integer-typed.
|
| 325 |
+
This is primarily useful for ensuring integrable-valued
|
| 326 |
+
array indices.
|
| 327 |
+
|
| 328 |
+
Parameters
|
| 329 |
+
----------
|
| 330 |
+
x : number
|
| 331 |
+
A scalar value to be cast to int
|
| 332 |
+
cast : function [optional]
|
| 333 |
+
A function to modify ``x`` before casting.
|
| 334 |
+
Default: `np.floor`
|
| 335 |
+
|
| 336 |
+
Returns
|
| 337 |
+
-------
|
| 338 |
+
x_int : int
|
| 339 |
+
``x_int = int(cast(x))``
|
| 340 |
+
|
| 341 |
+
Raises
|
| 342 |
+
------
|
| 343 |
+
ParameterError
|
| 344 |
+
If ``cast`` is provided and is not callable.
|
| 345 |
+
"""
|
| 346 |
+
|
| 347 |
+
if cast is None:
|
| 348 |
+
cast = np.floor
|
| 349 |
+
|
| 350 |
+
if not callable(cast):
|
| 351 |
+
raise ParameterError("cast parameter must be callable")
|
| 352 |
+
|
| 353 |
+
return int(cast(x))
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
def is_positive_int(x: float) -> bool:
|
| 357 |
+
"""Checks that x is a positive integer, i.e. 1 or greater.
|
| 358 |
+
|
| 359 |
+
Parameters
|
| 360 |
+
----------
|
| 361 |
+
x : number
|
| 362 |
+
|
| 363 |
+
Returns
|
| 364 |
+
-------
|
| 365 |
+
positive : bool
|
| 366 |
+
|
| 367 |
+
"""
|
| 368 |
+
|
| 369 |
+
# Check type first to catch None values.
|
| 370 |
+
return isinstance(x, (int, np.integer)) and (x > 0)
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
def valid_intervals(intervals: np.ndarray) -> bool:
|
| 374 |
+
"""Ensure that an array is a valid representation of time intervals:
|
| 375 |
+
|
| 376 |
+
- intervals.ndim == 2
|
| 377 |
+
- intervals.shape[1] == 2
|
| 378 |
+
- intervals[i, 0] <= intervals[i, 1] for all i
|
| 379 |
+
|
| 380 |
+
Parameters
|
| 381 |
+
----------
|
| 382 |
+
intervals : np.ndarray [shape=(n, 2)]
|
| 383 |
+
set of time intervals
|
| 384 |
+
|
| 385 |
+
Returns
|
| 386 |
+
-------
|
| 387 |
+
valid : bool
|
| 388 |
+
True if ``intervals`` passes validation.
|
| 389 |
+
"""
|
| 390 |
+
|
| 391 |
+
if intervals.ndim != 2 or intervals.shape[-1] != 2:
|
| 392 |
+
raise ParameterError("intervals must have shape (n, 2)")
|
| 393 |
+
|
| 394 |
+
if np.any(intervals[:, 0] > intervals[:, 1]):
|
| 395 |
+
raise ParameterError(f"intervals={intervals} must have non-negative durations")
|
| 396 |
+
|
| 397 |
+
return True
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def pad_center(
|
| 401 |
+
data: np.ndarray, *, size: int, axis: int = -1, **kwargs: Any
|
| 402 |
+
) -> np.ndarray:
|
| 403 |
+
"""Pad an array to a target length along a target axis.
|
| 404 |
+
|
| 405 |
+
This differs from `np.pad` by centering the data prior to padding,
|
| 406 |
+
analogous to `str.center`
|
| 407 |
+
|
| 408 |
+
Examples
|
| 409 |
+
--------
|
| 410 |
+
>>> # Generate a vector
|
| 411 |
+
>>> data = np.ones(5)
|
| 412 |
+
>>> librosa.util.pad_center(data, size=10, mode='constant')
|
| 413 |
+
array([ 0., 0., 1., 1., 1., 1., 1., 0., 0., 0.])
|
| 414 |
+
|
| 415 |
+
>>> # Pad a matrix along its first dimension
|
| 416 |
+
>>> data = np.ones((3, 5))
|
| 417 |
+
>>> librosa.util.pad_center(data, size=7, axis=0)
|
| 418 |
+
array([[ 0., 0., 0., 0., 0.],
|
| 419 |
+
[ 0., 0., 0., 0., 0.],
|
| 420 |
+
[ 1., 1., 1., 1., 1.],
|
| 421 |
+
[ 1., 1., 1., 1., 1.],
|
| 422 |
+
[ 1., 1., 1., 1., 1.],
|
| 423 |
+
[ 0., 0., 0., 0., 0.],
|
| 424 |
+
[ 0., 0., 0., 0., 0.]])
|
| 425 |
+
>>> # Or its second dimension
|
| 426 |
+
>>> librosa.util.pad_center(data, size=7, axis=1)
|
| 427 |
+
array([[ 0., 1., 1., 1., 1., 1., 0.],
|
| 428 |
+
[ 0., 1., 1., 1., 1., 1., 0.],
|
| 429 |
+
[ 0., 1., 1., 1., 1., 1., 0.]])
|
| 430 |
+
|
| 431 |
+
Parameters
|
| 432 |
+
----------
|
| 433 |
+
data : np.ndarray
|
| 434 |
+
Vector to be padded and centered
|
| 435 |
+
size : int >= len(data) [scalar]
|
| 436 |
+
Length to pad ``data``
|
| 437 |
+
axis : int
|
| 438 |
+
Axis along which to pad and center the data
|
| 439 |
+
**kwargs : additional keyword arguments
|
| 440 |
+
arguments passed to `np.pad`
|
| 441 |
+
|
| 442 |
+
Returns
|
| 443 |
+
-------
|
| 444 |
+
data_padded : np.ndarray
|
| 445 |
+
``data`` centered and padded to length ``size`` along the
|
| 446 |
+
specified axis
|
| 447 |
+
|
| 448 |
+
Raises
|
| 449 |
+
------
|
| 450 |
+
ParameterError
|
| 451 |
+
If ``size < data.shape[axis]``
|
| 452 |
+
|
| 453 |
+
See Also
|
| 454 |
+
--------
|
| 455 |
+
numpy.pad
|
| 456 |
+
"""
|
| 457 |
+
|
| 458 |
+
kwargs.setdefault("mode", "constant")
|
| 459 |
+
|
| 460 |
+
n = data.shape[axis]
|
| 461 |
+
|
| 462 |
+
lpad = int((size - n) // 2)
|
| 463 |
+
|
| 464 |
+
lengths = [(0, 0)] * data.ndim
|
| 465 |
+
lengths[axis] = (lpad, int(size - n - lpad))
|
| 466 |
+
|
| 467 |
+
if lpad < 0:
|
| 468 |
+
raise ParameterError(
|
| 469 |
+
f"Target size ({size:d}) must be at least input size ({n:d})"
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
return np.pad(data, lengths, **kwargs)
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
def expand_to(
|
| 476 |
+
x: np.ndarray, *, ndim: int, axes: Union[int, slice, Sequence[int], Sequence[slice]]
|
| 477 |
+
) -> np.ndarray:
|
| 478 |
+
"""Expand the dimensions of an input array with
|
| 479 |
+
|
| 480 |
+
Parameters
|
| 481 |
+
----------
|
| 482 |
+
x : np.ndarray
|
| 483 |
+
The input array
|
| 484 |
+
ndim : int
|
| 485 |
+
The number of dimensions to expand to. Must be at least ``x.ndim``
|
| 486 |
+
axes : int or slice
|
| 487 |
+
The target axis or axes to preserve from x.
|
| 488 |
+
All other axes will have length 1.
|
| 489 |
+
|
| 490 |
+
Returns
|
| 491 |
+
-------
|
| 492 |
+
x_exp : np.ndarray
|
| 493 |
+
The expanded version of ``x``, satisfying the following:
|
| 494 |
+
``x_exp[axes] == x``
|
| 495 |
+
``x_exp.ndim == ndim``
|
| 496 |
+
|
| 497 |
+
See Also
|
| 498 |
+
--------
|
| 499 |
+
np.expand_dims
|
| 500 |
+
|
| 501 |
+
Examples
|
| 502 |
+
--------
|
| 503 |
+
Expand a 1d array into an (n, 1) shape
|
| 504 |
+
|
| 505 |
+
>>> x = np.arange(3)
|
| 506 |
+
>>> librosa.util.expand_to(x, ndim=2, axes=0)
|
| 507 |
+
array([[0],
|
| 508 |
+
[1],
|
| 509 |
+
[2]])
|
| 510 |
+
|
| 511 |
+
Expand a 1d array into a (1, n) shape
|
| 512 |
+
|
| 513 |
+
>>> librosa.util.expand_to(x, ndim=2, axes=1)
|
| 514 |
+
array([[0, 1, 2]])
|
| 515 |
+
|
| 516 |
+
Expand a 2d array into (1, n, m, 1) shape
|
| 517 |
+
|
| 518 |
+
>>> x = np.vander(np.arange(3))
|
| 519 |
+
>>> librosa.util.expand_to(x, ndim=4, axes=[1,2]).shape
|
| 520 |
+
(1, 3, 3, 1)
|
| 521 |
+
"""
|
| 522 |
+
|
| 523 |
+
# Force axes into a tuple
|
| 524 |
+
axes_tup: Tuple[int]
|
| 525 |
+
try:
|
| 526 |
+
axes_tup = tuple(axes) # type: ignore
|
| 527 |
+
except TypeError:
|
| 528 |
+
axes_tup = tuple([axes]) # type: ignore
|
| 529 |
+
|
| 530 |
+
if len(axes_tup) != x.ndim:
|
| 531 |
+
raise ParameterError(
|
| 532 |
+
f"Shape mismatch between axes={axes_tup} and input x.shape={x.shape}"
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
+
if ndim < x.ndim:
|
| 536 |
+
raise ParameterError(
|
| 537 |
+
f"Cannot expand x.shape={x.shape} to fewer dimensions ndim={ndim}"
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
shape: List[int] = [1] * ndim
|
| 541 |
+
for i, axi in enumerate(axes_tup):
|
| 542 |
+
shape[axi] = x.shape[i]
|
| 543 |
+
|
| 544 |
+
return x.reshape(shape)
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
def fix_length(
|
| 548 |
+
data: np.ndarray, *, size: int, axis: int = -1, **kwargs: Any
|
| 549 |
+
) -> np.ndarray:
|
| 550 |
+
"""Fix the length an array ``data`` to exactly ``size`` along a target axis.
|
| 551 |
+
|
| 552 |
+
If ``data.shape[axis] < n``, pad according to the provided kwargs.
|
| 553 |
+
By default, ``data`` is padded with trailing zeros.
|
| 554 |
+
|
| 555 |
+
Examples
|
| 556 |
+
--------
|
| 557 |
+
>>> y = np.arange(7)
|
| 558 |
+
>>> # Default: pad with zeros
|
| 559 |
+
>>> librosa.util.fix_length(y, size=10)
|
| 560 |
+
array([0, 1, 2, 3, 4, 5, 6, 0, 0, 0])
|
| 561 |
+
>>> # Trim to a desired length
|
| 562 |
+
>>> librosa.util.fix_length(y, size=5)
|
| 563 |
+
array([0, 1, 2, 3, 4])
|
| 564 |
+
>>> # Use edge-padding instead of zeros
|
| 565 |
+
>>> librosa.util.fix_length(y, size=10, mode='edge')
|
| 566 |
+
array([0, 1, 2, 3, 4, 5, 6, 6, 6, 6])
|
| 567 |
+
|
| 568 |
+
Parameters
|
| 569 |
+
----------
|
| 570 |
+
data : np.ndarray
|
| 571 |
+
array to be length-adjusted
|
| 572 |
+
size : int >= 0 [scalar]
|
| 573 |
+
desired length of the array
|
| 574 |
+
axis : int, <= data.ndim
|
| 575 |
+
axis along which to fix length
|
| 576 |
+
**kwargs : additional keyword arguments
|
| 577 |
+
Parameters to ``np.pad``
|
| 578 |
+
|
| 579 |
+
Returns
|
| 580 |
+
-------
|
| 581 |
+
data_fixed : np.ndarray [shape=data.shape]
|
| 582 |
+
``data`` either trimmed or padded to length ``size``
|
| 583 |
+
along the specified axis.
|
| 584 |
+
|
| 585 |
+
See Also
|
| 586 |
+
--------
|
| 587 |
+
numpy.pad
|
| 588 |
+
"""
|
| 589 |
+
|
| 590 |
+
kwargs.setdefault("mode", "constant")
|
| 591 |
+
|
| 592 |
+
n = data.shape[axis]
|
| 593 |
+
|
| 594 |
+
if n > size:
|
| 595 |
+
slices = [slice(None)] * data.ndim
|
| 596 |
+
slices[axis] = slice(0, size)
|
| 597 |
+
return data[tuple(slices)]
|
| 598 |
+
|
| 599 |
+
elif n < size:
|
| 600 |
+
lengths = [(0, 0)] * data.ndim
|
| 601 |
+
lengths[axis] = (0, size - n)
|
| 602 |
+
return np.pad(data, lengths, **kwargs)
|
| 603 |
+
|
| 604 |
+
return data
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
def fix_frames(
|
| 608 |
+
frames: _SequenceLike[int],
|
| 609 |
+
*,
|
| 610 |
+
x_min: Optional[int] = 0,
|
| 611 |
+
x_max: Optional[int] = None,
|
| 612 |
+
pad: bool = True,
|
| 613 |
+
) -> np.ndarray:
|
| 614 |
+
"""Fix a list of frames to lie within [x_min, x_max]
|
| 615 |
+
|
| 616 |
+
Examples
|
| 617 |
+
--------
|
| 618 |
+
>>> # Generate a list of frame indices
|
| 619 |
+
>>> frames = np.arange(0, 1000.0, 50)
|
| 620 |
+
>>> frames
|
| 621 |
+
array([ 0., 50., 100., 150., 200., 250., 300., 350.,
|
| 622 |
+
400., 450., 500., 550., 600., 650., 700., 750.,
|
| 623 |
+
800., 850., 900., 950.])
|
| 624 |
+
>>> # Clip to span at most 250
|
| 625 |
+
>>> librosa.util.fix_frames(frames, x_max=250)
|
| 626 |
+
array([ 0, 50, 100, 150, 200, 250])
|
| 627 |
+
>>> # Or pad to span up to 2500
|
| 628 |
+
>>> librosa.util.fix_frames(frames, x_max=2500)
|
| 629 |
+
array([ 0, 50, 100, 150, 200, 250, 300, 350, 400,
|
| 630 |
+
450, 500, 550, 600, 650, 700, 750, 800, 850,
|
| 631 |
+
900, 950, 2500])
|
| 632 |
+
>>> librosa.util.fix_frames(frames, x_max=2500, pad=False)
|
| 633 |
+
array([ 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500,
|
| 634 |
+
550, 600, 650, 700, 750, 800, 850, 900, 950])
|
| 635 |
+
|
| 636 |
+
>>> # Or starting away from zero
|
| 637 |
+
>>> frames = np.arange(200, 500, 33)
|
| 638 |
+
>>> frames
|
| 639 |
+
array([200, 233, 266, 299, 332, 365, 398, 431, 464, 497])
|
| 640 |
+
>>> librosa.util.fix_frames(frames)
|
| 641 |
+
array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497])
|
| 642 |
+
>>> librosa.util.fix_frames(frames, x_max=500)
|
| 643 |
+
array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497,
|
| 644 |
+
500])
|
| 645 |
+
|
| 646 |
+
Parameters
|
| 647 |
+
----------
|
| 648 |
+
frames : np.ndarray [shape=(n_frames,)]
|
| 649 |
+
List of non-negative frame indices
|
| 650 |
+
x_min : int >= 0 or None
|
| 651 |
+
Minimum allowed frame index
|
| 652 |
+
x_max : int >= 0 or None
|
| 653 |
+
Maximum allowed frame index
|
| 654 |
+
pad : boolean
|
| 655 |
+
If ``True``, then ``frames`` is expanded to span the full range
|
| 656 |
+
``[x_min, x_max]``
|
| 657 |
+
|
| 658 |
+
Returns
|
| 659 |
+
-------
|
| 660 |
+
fixed_frames : np.ndarray [shape=(n_fixed_frames,), dtype=int]
|
| 661 |
+
Fixed frame indices, flattened and sorted
|
| 662 |
+
|
| 663 |
+
Raises
|
| 664 |
+
------
|
| 665 |
+
ParameterError
|
| 666 |
+
If ``frames`` contains negative values
|
| 667 |
+
"""
|
| 668 |
+
|
| 669 |
+
frames = np.asarray(frames)
|
| 670 |
+
|
| 671 |
+
if np.any(frames < 0):
|
| 672 |
+
raise ParameterError("Negative frame index detected")
|
| 673 |
+
|
| 674 |
+
# TODO: this whole function could be made more efficient
|
| 675 |
+
|
| 676 |
+
if pad and (x_min is not None or x_max is not None):
|
| 677 |
+
frames = np.clip(frames, x_min, x_max)
|
| 678 |
+
|
| 679 |
+
if pad:
|
| 680 |
+
pad_data = []
|
| 681 |
+
if x_min is not None:
|
| 682 |
+
pad_data.append(x_min)
|
| 683 |
+
if x_max is not None:
|
| 684 |
+
pad_data.append(x_max)
|
| 685 |
+
frames = np.concatenate((np.asarray(pad_data), frames))
|
| 686 |
+
|
| 687 |
+
if x_min is not None:
|
| 688 |
+
frames = frames[frames >= x_min]
|
| 689 |
+
|
| 690 |
+
if x_max is not None:
|
| 691 |
+
frames = frames[frames <= x_max]
|
| 692 |
+
|
| 693 |
+
unique: np.ndarray = np.unique(frames).astype(int)
|
| 694 |
+
return unique
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
@overload
|
| 698 |
+
def axis_sort(
|
| 699 |
+
S: np.ndarray,
|
| 700 |
+
*,
|
| 701 |
+
axis: int = ...,
|
| 702 |
+
index: Literal[False] = ...,
|
| 703 |
+
value: Optional[Callable[..., Any]] = ...,
|
| 704 |
+
) -> np.ndarray:
|
| 705 |
+
...
|
| 706 |
+
|
| 707 |
+
|
| 708 |
+
@overload
|
| 709 |
+
def axis_sort(
|
| 710 |
+
S: np.ndarray,
|
| 711 |
+
*,
|
| 712 |
+
axis: int = ...,
|
| 713 |
+
index: Literal[True],
|
| 714 |
+
value: Optional[Callable[..., Any]] = ...,
|
| 715 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 716 |
+
...
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
def axis_sort(
|
| 720 |
+
S: np.ndarray,
|
| 721 |
+
*,
|
| 722 |
+
axis: int = -1,
|
| 723 |
+
index: bool = False,
|
| 724 |
+
value: Optional[Callable[..., Any]] = None,
|
| 725 |
+
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
|
| 726 |
+
"""Sort an array along its rows or columns.
|
| 727 |
+
|
| 728 |
+
Examples
|
| 729 |
+
--------
|
| 730 |
+
Visualize NMF output for a spectrogram S
|
| 731 |
+
|
| 732 |
+
>>> # Sort the columns of W by peak frequency bin
|
| 733 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
| 734 |
+
>>> S = np.abs(librosa.stft(y))
|
| 735 |
+
>>> W, H = librosa.decompose.decompose(S, n_components=64)
|
| 736 |
+
>>> W_sort = librosa.util.axis_sort(W)
|
| 737 |
+
|
| 738 |
+
Or sort by the lowest frequency bin
|
| 739 |
+
|
| 740 |
+
>>> W_sort = librosa.util.axis_sort(W, value=np.argmin)
|
| 741 |
+
|
| 742 |
+
Or sort the rows instead of the columns
|
| 743 |
+
|
| 744 |
+
>>> W_sort_rows = librosa.util.axis_sort(W, axis=0)
|
| 745 |
+
|
| 746 |
+
Get the sorting index also, and use it to permute the rows of H
|
| 747 |
+
|
| 748 |
+
>>> W_sort, idx = librosa.util.axis_sort(W, index=True)
|
| 749 |
+
>>> H_sort = H[idx, :]
|
| 750 |
+
|
| 751 |
+
>>> import matplotlib.pyplot as plt
|
| 752 |
+
>>> fig, ax = plt.subplots(nrows=2, ncols=2)
|
| 753 |
+
>>> img_w = librosa.display.specshow(librosa.amplitude_to_db(W, ref=np.max),
|
| 754 |
+
... y_axis='log', ax=ax[0, 0])
|
| 755 |
+
>>> ax[0, 0].set(title='W')
|
| 756 |
+
>>> ax[0, 0].label_outer()
|
| 757 |
+
>>> img_act = librosa.display.specshow(H, x_axis='time', ax=ax[0, 1])
|
| 758 |
+
>>> ax[0, 1].set(title='H')
|
| 759 |
+
>>> ax[0, 1].label_outer()
|
| 760 |
+
>>> librosa.display.specshow(librosa.amplitude_to_db(W_sort,
|
| 761 |
+
... ref=np.max),
|
| 762 |
+
... y_axis='log', ax=ax[1, 0])
|
| 763 |
+
>>> ax[1, 0].set(title='W sorted')
|
| 764 |
+
>>> librosa.display.specshow(H_sort, x_axis='time', ax=ax[1, 1])
|
| 765 |
+
>>> ax[1, 1].set(title='H sorted')
|
| 766 |
+
>>> ax[1, 1].label_outer()
|
| 767 |
+
>>> fig.colorbar(img_w, ax=ax[:, 0], orientation='horizontal')
|
| 768 |
+
>>> fig.colorbar(img_act, ax=ax[:, 1], orientation='horizontal')
|
| 769 |
+
|
| 770 |
+
Parameters
|
| 771 |
+
----------
|
| 772 |
+
S : np.ndarray [shape=(d, n)]
|
| 773 |
+
Array to be sorted
|
| 774 |
+
|
| 775 |
+
axis : int [scalar]
|
| 776 |
+
The axis along which to compute the sorting values
|
| 777 |
+
|
| 778 |
+
- ``axis=0`` to sort rows by peak column index
|
| 779 |
+
- ``axis=1`` to sort columns by peak row index
|
| 780 |
+
|
| 781 |
+
index : boolean [scalar]
|
| 782 |
+
If true, returns the index array as well as the permuted data.
|
| 783 |
+
|
| 784 |
+
value : function
|
| 785 |
+
function to return the index corresponding to the sort order.
|
| 786 |
+
Default: `np.argmax`.
|
| 787 |
+
|
| 788 |
+
Returns
|
| 789 |
+
-------
|
| 790 |
+
S_sort : np.ndarray [shape=(d, n)]
|
| 791 |
+
``S`` with the columns or rows permuted in sorting order
|
| 792 |
+
idx : np.ndarray (optional) [shape=(d,) or (n,)]
|
| 793 |
+
If ``index == True``, the sorting index used to permute ``S``.
|
| 794 |
+
Length of ``idx`` corresponds to the selected ``axis``.
|
| 795 |
+
|
| 796 |
+
Raises
|
| 797 |
+
------
|
| 798 |
+
ParameterError
|
| 799 |
+
If ``S`` does not have exactly 2 dimensions (``S.ndim != 2``)
|
| 800 |
+
"""
|
| 801 |
+
|
| 802 |
+
if value is None:
|
| 803 |
+
value = np.argmax
|
| 804 |
+
|
| 805 |
+
if S.ndim != 2:
|
| 806 |
+
raise ParameterError("axis_sort is only defined for 2D arrays")
|
| 807 |
+
|
| 808 |
+
bin_idx = value(S, axis=np.mod(1 - axis, S.ndim))
|
| 809 |
+
idx = np.argsort(bin_idx)
|
| 810 |
+
|
| 811 |
+
sort_slice = [slice(None)] * S.ndim
|
| 812 |
+
sort_slice[axis] = idx # type: ignore
|
| 813 |
+
|
| 814 |
+
if index:
|
| 815 |
+
return S[tuple(sort_slice)], idx
|
| 816 |
+
else:
|
| 817 |
+
return S[tuple(sort_slice)]
|
| 818 |
+
|
| 819 |
+
|
| 820 |
+
@cache(level=40)
|
| 821 |
+
def normalize(
|
| 822 |
+
S: np.ndarray,
|
| 823 |
+
*,
|
| 824 |
+
norm: Optional[float] = np.inf,
|
| 825 |
+
axis: Optional[int] = 0,
|
| 826 |
+
threshold: Optional[_FloatLike_co] = None,
|
| 827 |
+
fill: Optional[bool] = None,
|
| 828 |
+
) -> np.ndarray:
|
| 829 |
+
"""Normalize an array along a chosen axis.
|
| 830 |
+
|
| 831 |
+
Given a norm (described below) and a target axis, the input
|
| 832 |
+
array is scaled so that::
|
| 833 |
+
|
| 834 |
+
norm(S, axis=axis) == 1
|
| 835 |
+
|
| 836 |
+
For example, ``axis=0`` normalizes each column of a 2-d array
|
| 837 |
+
by aggregating over the rows (0-axis).
|
| 838 |
+
Similarly, ``axis=1`` normalizes each row of a 2-d array.
|
| 839 |
+
|
| 840 |
+
This function also supports thresholding small-norm slices:
|
| 841 |
+
any slice (i.e., row or column) with norm below a specified
|
| 842 |
+
``threshold`` can be left un-normalized, set to all-zeros, or
|
| 843 |
+
filled with uniform non-zero values that normalize to 1.
|
| 844 |
+
|
| 845 |
+
Note: the semantics of this function differ from
|
| 846 |
+
`scipy.linalg.norm` in two ways: multi-dimensional arrays
|
| 847 |
+
are supported, but matrix-norms are not.
|
| 848 |
+
|
| 849 |
+
Parameters
|
| 850 |
+
----------
|
| 851 |
+
S : np.ndarray
|
| 852 |
+
The array to normalize
|
| 853 |
+
|
| 854 |
+
norm : {np.inf, -np.inf, 0, float > 0, None}
|
| 855 |
+
- `np.inf` : maximum absolute value
|
| 856 |
+
- `-np.inf` : minimum absolute value
|
| 857 |
+
- `0` : number of non-zeros (the support)
|
| 858 |
+
- float : corresponding l_p norm
|
| 859 |
+
See `scipy.linalg.norm` for details.
|
| 860 |
+
- None : no normalization is performed
|
| 861 |
+
|
| 862 |
+
axis : int [scalar]
|
| 863 |
+
Axis along which to compute the norm.
|
| 864 |
+
|
| 865 |
+
threshold : number > 0 [optional]
|
| 866 |
+
Only the columns (or rows) with norm at least ``threshold`` are
|
| 867 |
+
normalized.
|
| 868 |
+
|
| 869 |
+
By default, the threshold is determined from
|
| 870 |
+
the numerical precision of ``S.dtype``.
|
| 871 |
+
|
| 872 |
+
fill : None or bool
|
| 873 |
+
If None, then columns (or rows) with norm below ``threshold``
|
| 874 |
+
are left as is.
|
| 875 |
+
|
| 876 |
+
If False, then columns (rows) with norm below ``threshold``
|
| 877 |
+
are set to 0.
|
| 878 |
+
|
| 879 |
+
If True, then columns (rows) with norm below ``threshold``
|
| 880 |
+
are filled uniformly such that the corresponding norm is 1.
|
| 881 |
+
|
| 882 |
+
.. note:: ``fill=True`` is incompatible with ``norm=0`` because
|
| 883 |
+
no uniform vector exists with l0 "norm" equal to 1.
|
| 884 |
+
|
| 885 |
+
Returns
|
| 886 |
+
-------
|
| 887 |
+
S_norm : np.ndarray [shape=S.shape]
|
| 888 |
+
Normalized array
|
| 889 |
+
|
| 890 |
+
Raises
|
| 891 |
+
------
|
| 892 |
+
ParameterError
|
| 893 |
+
If ``norm`` is not among the valid types defined above
|
| 894 |
+
|
| 895 |
+
If ``S`` is not finite
|
| 896 |
+
|
| 897 |
+
If ``fill=True`` and ``norm=0``
|
| 898 |
+
|
| 899 |
+
See Also
|
| 900 |
+
--------
|
| 901 |
+
scipy.linalg.norm
|
| 902 |
+
|
| 903 |
+
Notes
|
| 904 |
+
-----
|
| 905 |
+
This function caches at level 40.
|
| 906 |
+
|
| 907 |
+
Examples
|
| 908 |
+
--------
|
| 909 |
+
>>> # Construct an example matrix
|
| 910 |
+
>>> S = np.vander(np.arange(-2.0, 2.0))
|
| 911 |
+
>>> S
|
| 912 |
+
array([[-8., 4., -2., 1.],
|
| 913 |
+
[-1., 1., -1., 1.],
|
| 914 |
+
[ 0., 0., 0., 1.],
|
| 915 |
+
[ 1., 1., 1., 1.]])
|
| 916 |
+
>>> # Max (l-infinity)-normalize the columns
|
| 917 |
+
>>> librosa.util.normalize(S)
|
| 918 |
+
array([[-1. , 1. , -1. , 1. ],
|
| 919 |
+
[-0.125, 0.25 , -0.5 , 1. ],
|
| 920 |
+
[ 0. , 0. , 0. , 1. ],
|
| 921 |
+
[ 0.125, 0.25 , 0.5 , 1. ]])
|
| 922 |
+
>>> # Max (l-infinity)-normalize the rows
|
| 923 |
+
>>> librosa.util.normalize(S, axis=1)
|
| 924 |
+
array([[-1. , 0.5 , -0.25 , 0.125],
|
| 925 |
+
[-1. , 1. , -1. , 1. ],
|
| 926 |
+
[ 0. , 0. , 0. , 1. ],
|
| 927 |
+
[ 1. , 1. , 1. , 1. ]])
|
| 928 |
+
>>> # l1-normalize the columns
|
| 929 |
+
>>> librosa.util.normalize(S, norm=1)
|
| 930 |
+
array([[-0.8 , 0.667, -0.5 , 0.25 ],
|
| 931 |
+
[-0.1 , 0.167, -0.25 , 0.25 ],
|
| 932 |
+
[ 0. , 0. , 0. , 0.25 ],
|
| 933 |
+
[ 0.1 , 0.167, 0.25 , 0.25 ]])
|
| 934 |
+
>>> # l2-normalize the columns
|
| 935 |
+
>>> librosa.util.normalize(S, norm=2)
|
| 936 |
+
array([[-0.985, 0.943, -0.816, 0.5 ],
|
| 937 |
+
[-0.123, 0.236, -0.408, 0.5 ],
|
| 938 |
+
[ 0. , 0. , 0. , 0.5 ],
|
| 939 |
+
[ 0.123, 0.236, 0.408, 0.5 ]])
|
| 940 |
+
|
| 941 |
+
>>> # Thresholding and filling
|
| 942 |
+
>>> S[:, -1] = 1e-308
|
| 943 |
+
>>> S
|
| 944 |
+
array([[ -8.000e+000, 4.000e+000, -2.000e+000,
|
| 945 |
+
1.000e-308],
|
| 946 |
+
[ -1.000e+000, 1.000e+000, -1.000e+000,
|
| 947 |
+
1.000e-308],
|
| 948 |
+
[ 0.000e+000, 0.000e+000, 0.000e+000,
|
| 949 |
+
1.000e-308],
|
| 950 |
+
[ 1.000e+000, 1.000e+000, 1.000e+000,
|
| 951 |
+
1.000e-308]])
|
| 952 |
+
|
| 953 |
+
>>> # By default, small-norm columns are left untouched
|
| 954 |
+
>>> librosa.util.normalize(S)
|
| 955 |
+
array([[ -1.000e+000, 1.000e+000, -1.000e+000,
|
| 956 |
+
1.000e-308],
|
| 957 |
+
[ -1.250e-001, 2.500e-001, -5.000e-001,
|
| 958 |
+
1.000e-308],
|
| 959 |
+
[ 0.000e+000, 0.000e+000, 0.000e+000,
|
| 960 |
+
1.000e-308],
|
| 961 |
+
[ 1.250e-001, 2.500e-001, 5.000e-001,
|
| 962 |
+
1.000e-308]])
|
| 963 |
+
>>> # Small-norm columns can be zeroed out
|
| 964 |
+
>>> librosa.util.normalize(S, fill=False)
|
| 965 |
+
array([[-1. , 1. , -1. , 0. ],
|
| 966 |
+
[-0.125, 0.25 , -0.5 , 0. ],
|
| 967 |
+
[ 0. , 0. , 0. , 0. ],
|
| 968 |
+
[ 0.125, 0.25 , 0.5 , 0. ]])
|
| 969 |
+
>>> # Or set to constant with unit-norm
|
| 970 |
+
>>> librosa.util.normalize(S, fill=True)
|
| 971 |
+
array([[-1. , 1. , -1. , 1. ],
|
| 972 |
+
[-0.125, 0.25 , -0.5 , 1. ],
|
| 973 |
+
[ 0. , 0. , 0. , 1. ],
|
| 974 |
+
[ 0.125, 0.25 , 0.5 , 1. ]])
|
| 975 |
+
>>> # With an l1 norm instead of max-norm
|
| 976 |
+
>>> librosa.util.normalize(S, norm=1, fill=True)
|
| 977 |
+
array([[-0.8 , 0.667, -0.5 , 0.25 ],
|
| 978 |
+
[-0.1 , 0.167, -0.25 , 0.25 ],
|
| 979 |
+
[ 0. , 0. , 0. , 0.25 ],
|
| 980 |
+
[ 0.1 , 0.167, 0.25 , 0.25 ]])
|
| 981 |
+
"""
|
| 982 |
+
|
| 983 |
+
# Avoid div-by-zero
|
| 984 |
+
if threshold is None:
|
| 985 |
+
threshold = tiny(S)
|
| 986 |
+
|
| 987 |
+
elif threshold <= 0:
|
| 988 |
+
raise ParameterError(f"threshold={threshold} must be strictly positive")
|
| 989 |
+
|
| 990 |
+
if fill not in [None, False, True]:
|
| 991 |
+
raise ParameterError(f"fill={fill} must be None or boolean")
|
| 992 |
+
|
| 993 |
+
if not np.all(np.isfinite(S)):
|
| 994 |
+
raise ParameterError("Input must be finite")
|
| 995 |
+
|
| 996 |
+
# All norms only depend on magnitude, let's do that first
|
| 997 |
+
mag = np.abs(S).astype(float)
|
| 998 |
+
|
| 999 |
+
# For max/min norms, filling with 1 works
|
| 1000 |
+
fill_norm = 1
|
| 1001 |
+
|
| 1002 |
+
if norm is None:
|
| 1003 |
+
return S
|
| 1004 |
+
|
| 1005 |
+
elif norm == np.inf:
|
| 1006 |
+
length = np.max(mag, axis=axis, keepdims=True)
|
| 1007 |
+
|
| 1008 |
+
elif norm == -np.inf:
|
| 1009 |
+
length = np.min(mag, axis=axis, keepdims=True)
|
| 1010 |
+
|
| 1011 |
+
elif norm == 0:
|
| 1012 |
+
if fill is True:
|
| 1013 |
+
raise ParameterError("Cannot normalize with norm=0 and fill=True")
|
| 1014 |
+
|
| 1015 |
+
length = np.sum(mag > 0, axis=axis, keepdims=True, dtype=mag.dtype)
|
| 1016 |
+
|
| 1017 |
+
elif np.issubdtype(type(norm), np.number) and norm > 0:
|
| 1018 |
+
length = np.sum(mag**norm, axis=axis, keepdims=True) ** (1.0 / norm)
|
| 1019 |
+
|
| 1020 |
+
if axis is None:
|
| 1021 |
+
fill_norm = mag.size ** (-1.0 / norm)
|
| 1022 |
+
else:
|
| 1023 |
+
fill_norm = mag.shape[axis] ** (-1.0 / norm)
|
| 1024 |
+
|
| 1025 |
+
else:
|
| 1026 |
+
raise ParameterError(f"Unsupported norm: {repr(norm)}")
|
| 1027 |
+
|
| 1028 |
+
# indices where norm is below the threshold
|
| 1029 |
+
small_idx = length < threshold
|
| 1030 |
+
|
| 1031 |
+
Snorm = np.empty_like(S)
|
| 1032 |
+
if fill is None:
|
| 1033 |
+
# Leave small indices un-normalized
|
| 1034 |
+
length[small_idx] = 1.0
|
| 1035 |
+
Snorm[:] = S / length
|
| 1036 |
+
|
| 1037 |
+
elif fill:
|
| 1038 |
+
# If we have a non-zero fill value, we locate those entries by
|
| 1039 |
+
# doing a nan-divide.
|
| 1040 |
+
# If S was finite, then length is finite (except for small positions)
|
| 1041 |
+
length[small_idx] = np.nan
|
| 1042 |
+
Snorm[:] = S / length
|
| 1043 |
+
Snorm[np.isnan(Snorm)] = fill_norm
|
| 1044 |
+
else:
|
| 1045 |
+
# Set small values to zero by doing an inf-divide.
|
| 1046 |
+
# This is safe (by IEEE-754) as long as S is finite.
|
| 1047 |
+
length[small_idx] = np.inf
|
| 1048 |
+
Snorm[:] = S / length
|
| 1049 |
+
|
| 1050 |
+
return Snorm
|
| 1051 |
+
|
| 1052 |
+
|
| 1053 |
+
@numba.stencil
|
| 1054 |
+
def _localmax_sten(x): # pragma: no cover
|
| 1055 |
+
"""Numba stencil for local maxima computation"""
|
| 1056 |
+
return (x[0] > x[-1]) & (x[0] >= x[1])
|
| 1057 |
+
|
| 1058 |
+
|
| 1059 |
+
@numba.stencil
|
| 1060 |
+
def _localmin_sten(x): # pragma: no cover
|
| 1061 |
+
"""Numba stencil for local minima computation"""
|
| 1062 |
+
return (x[0] < x[-1]) & (x[0] <= x[1])
|
| 1063 |
+
|
| 1064 |
+
|
| 1065 |
+
@numba.guvectorize(
|
| 1066 |
+
[
|
| 1067 |
+
"void(int16[:], bool_[:])",
|
| 1068 |
+
"void(int32[:], bool_[:])",
|
| 1069 |
+
"void(int64[:], bool_[:])",
|
| 1070 |
+
"void(float32[:], bool_[:])",
|
| 1071 |
+
"void(float64[:], bool_[:])",
|
| 1072 |
+
],
|
| 1073 |
+
"(n)->(n)",
|
| 1074 |
+
cache=True,
|
| 1075 |
+
nopython=True,
|
| 1076 |
+
)
|
| 1077 |
+
def _localmax(x, y): # pragma: no cover
|
| 1078 |
+
"""Vectorized wrapper for the localmax stencil"""
|
| 1079 |
+
y[:] = _localmax_sten(x)
|
| 1080 |
+
|
| 1081 |
+
|
| 1082 |
+
@numba.guvectorize(
|
| 1083 |
+
[
|
| 1084 |
+
"void(int16[:], bool_[:])",
|
| 1085 |
+
"void(int32[:], bool_[:])",
|
| 1086 |
+
"void(int64[:], bool_[:])",
|
| 1087 |
+
"void(float32[:], bool_[:])",
|
| 1088 |
+
"void(float64[:], bool_[:])",
|
| 1089 |
+
],
|
| 1090 |
+
"(n)->(n)",
|
| 1091 |
+
cache=True,
|
| 1092 |
+
nopython=True,
|
| 1093 |
+
)
|
| 1094 |
+
def _localmin(x, y): # pragma: no cover
|
| 1095 |
+
"""Vectorized wrapper for the localmin stencil"""
|
| 1096 |
+
y[:] = _localmin_sten(x)
|
| 1097 |
+
|
| 1098 |
+
|
| 1099 |
+
def localmax(x: np.ndarray, *, axis: int = 0) -> np.ndarray:
|
| 1100 |
+
"""Find local maxima in an array
|
| 1101 |
+
|
| 1102 |
+
An element ``x[i]`` is considered a local maximum if the following
|
| 1103 |
+
conditions are met:
|
| 1104 |
+
|
| 1105 |
+
- ``x[i] > x[i-1]``
|
| 1106 |
+
- ``x[i] >= x[i+1]``
|
| 1107 |
+
|
| 1108 |
+
Note that the first condition is strict, and that the first element
|
| 1109 |
+
``x[0]`` will never be considered as a local maximum.
|
| 1110 |
+
|
| 1111 |
+
Examples
|
| 1112 |
+
--------
|
| 1113 |
+
>>> x = np.array([1, 0, 1, 2, -1, 0, -2, 1])
|
| 1114 |
+
>>> librosa.util.localmax(x)
|
| 1115 |
+
array([False, False, False, True, False, True, False, True], dtype=bool)
|
| 1116 |
+
|
| 1117 |
+
>>> # Two-dimensional example
|
| 1118 |
+
>>> x = np.array([[1,0,1], [2, -1, 0], [2, 1, 3]])
|
| 1119 |
+
>>> librosa.util.localmax(x, axis=0)
|
| 1120 |
+
array([[False, False, False],
|
| 1121 |
+
[ True, False, False],
|
| 1122 |
+
[False, True, True]], dtype=bool)
|
| 1123 |
+
>>> librosa.util.localmax(x, axis=1)
|
| 1124 |
+
array([[False, False, True],
|
| 1125 |
+
[False, False, True],
|
| 1126 |
+
[False, False, True]], dtype=bool)
|
| 1127 |
+
|
| 1128 |
+
Parameters
|
| 1129 |
+
----------
|
| 1130 |
+
x : np.ndarray [shape=(d1,d2,...)]
|
| 1131 |
+
input vector or array
|
| 1132 |
+
axis : int
|
| 1133 |
+
axis along which to compute local maximality
|
| 1134 |
+
|
| 1135 |
+
Returns
|
| 1136 |
+
-------
|
| 1137 |
+
m : np.ndarray [shape=x.shape, dtype=bool]
|
| 1138 |
+
indicator array of local maximality along ``axis``
|
| 1139 |
+
|
| 1140 |
+
See Also
|
| 1141 |
+
--------
|
| 1142 |
+
localmin
|
| 1143 |
+
"""
|
| 1144 |
+
# Rotate the target axis to the end
|
| 1145 |
+
xi = x.swapaxes(-1, axis)
|
| 1146 |
+
|
| 1147 |
+
# Allocate the output array and rotate target axis
|
| 1148 |
+
lmax = np.empty_like(x, dtype=bool)
|
| 1149 |
+
lmaxi = lmax.swapaxes(-1, axis)
|
| 1150 |
+
|
| 1151 |
+
# Call the vectorized stencil
|
| 1152 |
+
_localmax(xi, lmaxi)
|
| 1153 |
+
|
| 1154 |
+
# Handle the edge condition not covered by the stencil
|
| 1155 |
+
lmaxi[..., -1] = xi[..., -1] > xi[..., -2]
|
| 1156 |
+
|
| 1157 |
+
return lmax
|
| 1158 |
+
|
| 1159 |
+
|
| 1160 |
+
def localmin(x: np.ndarray, *, axis: int = 0) -> np.ndarray:
|
| 1161 |
+
"""Find local minima in an array
|
| 1162 |
+
|
| 1163 |
+
An element ``x[i]`` is considered a local minimum if the following
|
| 1164 |
+
conditions are met:
|
| 1165 |
+
|
| 1166 |
+
- ``x[i] < x[i-1]``
|
| 1167 |
+
- ``x[i] <= x[i+1]``
|
| 1168 |
+
|
| 1169 |
+
Note that the first condition is strict, and that the first element
|
| 1170 |
+
``x[0]`` will never be considered as a local minimum.
|
| 1171 |
+
|
| 1172 |
+
Examples
|
| 1173 |
+
--------
|
| 1174 |
+
>>> x = np.array([1, 0, 1, 2, -1, 0, -2, 1])
|
| 1175 |
+
>>> librosa.util.localmin(x)
|
| 1176 |
+
array([False, True, False, False, True, False, True, False])
|
| 1177 |
+
|
| 1178 |
+
>>> # Two-dimensional example
|
| 1179 |
+
>>> x = np.array([[1,0,1], [2, -1, 0], [2, 1, 3]])
|
| 1180 |
+
>>> librosa.util.localmin(x, axis=0)
|
| 1181 |
+
array([[False, False, False],
|
| 1182 |
+
[False, True, True],
|
| 1183 |
+
[False, False, False]])
|
| 1184 |
+
|
| 1185 |
+
>>> librosa.util.localmin(x, axis=1)
|
| 1186 |
+
array([[False, True, False],
|
| 1187 |
+
[False, True, False],
|
| 1188 |
+
[False, True, False]])
|
| 1189 |
+
|
| 1190 |
+
Parameters
|
| 1191 |
+
----------
|
| 1192 |
+
x : np.ndarray [shape=(d1,d2,...)]
|
| 1193 |
+
input vector or array
|
| 1194 |
+
axis : int
|
| 1195 |
+
axis along which to compute local minimality
|
| 1196 |
+
|
| 1197 |
+
Returns
|
| 1198 |
+
-------
|
| 1199 |
+
m : np.ndarray [shape=x.shape, dtype=bool]
|
| 1200 |
+
indicator array of local minimality along ``axis``
|
| 1201 |
+
|
| 1202 |
+
See Also
|
| 1203 |
+
--------
|
| 1204 |
+
localmax
|
| 1205 |
+
"""
|
| 1206 |
+
# Rotate the target axis to the end
|
| 1207 |
+
xi = x.swapaxes(-1, axis)
|
| 1208 |
+
|
| 1209 |
+
# Allocate the output array and rotate target axis
|
| 1210 |
+
lmin = np.empty_like(x, dtype=bool)
|
| 1211 |
+
lmini = lmin.swapaxes(-1, axis)
|
| 1212 |
+
|
| 1213 |
+
# Call the vectorized stencil
|
| 1214 |
+
_localmin(xi, lmini)
|
| 1215 |
+
|
| 1216 |
+
# Handle the edge condition not covered by the stencil
|
| 1217 |
+
lmini[..., -1] = xi[..., -1] < xi[..., -2]
|
| 1218 |
+
|
| 1219 |
+
return lmin
|
| 1220 |
+
|
| 1221 |
+
|
| 1222 |
+
def peak_pick(
|
| 1223 |
+
x: np.ndarray,
|
| 1224 |
+
*,
|
| 1225 |
+
pre_max: int,
|
| 1226 |
+
post_max: int,
|
| 1227 |
+
pre_avg: int,
|
| 1228 |
+
post_avg: int,
|
| 1229 |
+
delta: float,
|
| 1230 |
+
wait: int,
|
| 1231 |
+
) -> np.ndarray:
|
| 1232 |
+
"""Uses a flexible heuristic to pick peaks in a signal.
|
| 1233 |
+
|
| 1234 |
+
A sample n is selected as an peak if the corresponding ``x[n]``
|
| 1235 |
+
fulfills the following three conditions:
|
| 1236 |
+
|
| 1237 |
+
1. ``x[n] == max(x[n - pre_max:n + post_max])``
|
| 1238 |
+
2. ``x[n] >= mean(x[n - pre_avg:n + post_avg]) + delta``
|
| 1239 |
+
3. ``n - previous_n > wait``
|
| 1240 |
+
|
| 1241 |
+
where ``previous_n`` is the last sample picked as a peak (greedily).
|
| 1242 |
+
|
| 1243 |
+
This implementation is based on [#]_ and [#]_.
|
| 1244 |
+
|
| 1245 |
+
.. [#] Boeck, Sebastian, Florian Krebs, and Markus Schedl.
|
| 1246 |
+
"Evaluating the Online Capabilities of Onset Detection Methods." ISMIR.
|
| 1247 |
+
2012.
|
| 1248 |
+
|
| 1249 |
+
.. [#] https://github.com/CPJKU/onset_detection/blob/master/onset_program.py
|
| 1250 |
+
|
| 1251 |
+
Parameters
|
| 1252 |
+
----------
|
| 1253 |
+
x : np.ndarray [shape=(n,)]
|
| 1254 |
+
input signal to peak picks from
|
| 1255 |
+
pre_max : int >= 0 [scalar]
|
| 1256 |
+
number of samples before ``n`` over which max is computed
|
| 1257 |
+
post_max : int >= 1 [scalar]
|
| 1258 |
+
number of samples after ``n`` over which max is computed
|
| 1259 |
+
pre_avg : int >= 0 [scalar]
|
| 1260 |
+
number of samples before ``n`` over which mean is computed
|
| 1261 |
+
post_avg : int >= 1 [scalar]
|
| 1262 |
+
number of samples after ``n`` over which mean is computed
|
| 1263 |
+
delta : float >= 0 [scalar]
|
| 1264 |
+
threshold offset for mean
|
| 1265 |
+
wait : int >= 0 [scalar]
|
| 1266 |
+
number of samples to wait after picking a peak
|
| 1267 |
+
|
| 1268 |
+
Returns
|
| 1269 |
+
-------
|
| 1270 |
+
peaks : np.ndarray [shape=(n_peaks,), dtype=int]
|
| 1271 |
+
indices of peaks in ``x``
|
| 1272 |
+
|
| 1273 |
+
Raises
|
| 1274 |
+
------
|
| 1275 |
+
ParameterError
|
| 1276 |
+
If any input lies outside its defined range
|
| 1277 |
+
|
| 1278 |
+
Examples
|
| 1279 |
+
--------
|
| 1280 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
| 1281 |
+
>>> onset_env = librosa.onset.onset_strength(y=y, sr=sr,
|
| 1282 |
+
... hop_length=512,
|
| 1283 |
+
... aggregate=np.median)
|
| 1284 |
+
>>> peaks = librosa.util.peak_pick(onset_env, pre_max=3, post_max=3, pre_avg=3, post_avg=5, delta=0.5, wait=10)
|
| 1285 |
+
>>> peaks
|
| 1286 |
+
array([ 3, 27, 40, 61, 72, 88, 103])
|
| 1287 |
+
|
| 1288 |
+
>>> import matplotlib.pyplot as plt
|
| 1289 |
+
>>> times = librosa.times_like(onset_env, sr=sr, hop_length=512)
|
| 1290 |
+
>>> fig, ax = plt.subplots(nrows=2, sharex=True)
|
| 1291 |
+
>>> D = np.abs(librosa.stft(y))
|
| 1292 |
+
>>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max),
|
| 1293 |
+
... y_axis='log', x_axis='time', ax=ax[1])
|
| 1294 |
+
>>> ax[0].plot(times, onset_env, alpha=0.8, label='Onset strength')
|
| 1295 |
+
>>> ax[0].vlines(times[peaks], 0,
|
| 1296 |
+
... onset_env.max(), color='r', alpha=0.8,
|
| 1297 |
+
... label='Selected peaks')
|
| 1298 |
+
>>> ax[0].legend(frameon=True, framealpha=0.8)
|
| 1299 |
+
>>> ax[0].label_outer()
|
| 1300 |
+
"""
|
| 1301 |
+
|
| 1302 |
+
if pre_max < 0:
|
| 1303 |
+
raise ParameterError("pre_max must be non-negative")
|
| 1304 |
+
if pre_avg < 0:
|
| 1305 |
+
raise ParameterError("pre_avg must be non-negative")
|
| 1306 |
+
if delta < 0:
|
| 1307 |
+
raise ParameterError("delta must be non-negative")
|
| 1308 |
+
if wait < 0:
|
| 1309 |
+
raise ParameterError("wait must be non-negative")
|
| 1310 |
+
|
| 1311 |
+
if post_max <= 0:
|
| 1312 |
+
raise ParameterError("post_max must be positive")
|
| 1313 |
+
|
| 1314 |
+
if post_avg <= 0:
|
| 1315 |
+
raise ParameterError("post_avg must be positive")
|
| 1316 |
+
|
| 1317 |
+
if x.ndim != 1:
|
| 1318 |
+
raise ParameterError("input array must be one-dimensional")
|
| 1319 |
+
|
| 1320 |
+
# Ensure valid index types
|
| 1321 |
+
pre_max = valid_int(pre_max, cast=np.ceil)
|
| 1322 |
+
post_max = valid_int(post_max, cast=np.ceil)
|
| 1323 |
+
pre_avg = valid_int(pre_avg, cast=np.ceil)
|
| 1324 |
+
post_avg = valid_int(post_avg, cast=np.ceil)
|
| 1325 |
+
wait = valid_int(wait, cast=np.ceil)
|
| 1326 |
+
|
| 1327 |
+
# Get the maximum of the signal over a sliding window
|
| 1328 |
+
max_length = pre_max + post_max
|
| 1329 |
+
max_origin = np.ceil(0.5 * (pre_max - post_max))
|
| 1330 |
+
# Using mode='constant' and cval=x.min() effectively truncates
|
| 1331 |
+
# the sliding window at the boundaries
|
| 1332 |
+
mov_max = scipy.ndimage.filters.maximum_filter1d(
|
| 1333 |
+
x, int(max_length), mode="constant", origin=int(max_origin), cval=x.min()
|
| 1334 |
+
)
|
| 1335 |
+
|
| 1336 |
+
# Get the mean of the signal over a sliding window
|
| 1337 |
+
avg_length = pre_avg + post_avg
|
| 1338 |
+
avg_origin = np.ceil(0.5 * (pre_avg - post_avg))
|
| 1339 |
+
# Here, there is no mode which results in the behavior we want,
|
| 1340 |
+
# so we'll correct below.
|
| 1341 |
+
mov_avg = scipy.ndimage.filters.uniform_filter1d(
|
| 1342 |
+
x, int(avg_length), mode="nearest", origin=int(avg_origin)
|
| 1343 |
+
)
|
| 1344 |
+
|
| 1345 |
+
# Correct sliding average at the beginning
|
| 1346 |
+
n = 0
|
| 1347 |
+
# Only need to correct in the range where the window needs to be truncated
|
| 1348 |
+
while n - pre_avg < 0 and n < x.shape[0]:
|
| 1349 |
+
# This just explicitly does mean(x[n - pre_avg:n + post_avg])
|
| 1350 |
+
# with truncation
|
| 1351 |
+
start = n - pre_avg
|
| 1352 |
+
start = start if start > 0 else 0
|
| 1353 |
+
mov_avg[n] = np.mean(x[start : n + post_avg])
|
| 1354 |
+
n += 1
|
| 1355 |
+
# Correct sliding average at the end
|
| 1356 |
+
n = x.shape[0] - post_avg
|
| 1357 |
+
# When post_avg > x.shape[0] (weird case), reset to 0
|
| 1358 |
+
n = n if n > 0 else 0
|
| 1359 |
+
while n < x.shape[0]:
|
| 1360 |
+
start = n - pre_avg
|
| 1361 |
+
start = start if start > 0 else 0
|
| 1362 |
+
mov_avg[n] = np.mean(x[start : n + post_avg])
|
| 1363 |
+
n += 1
|
| 1364 |
+
|
| 1365 |
+
# First mask out all entries not equal to the local max
|
| 1366 |
+
detections = x * (x == mov_max)
|
| 1367 |
+
|
| 1368 |
+
# Then mask out all entries less than the thresholded average
|
| 1369 |
+
detections = detections * (detections >= (mov_avg + delta))
|
| 1370 |
+
|
| 1371 |
+
# Initialize peaks array, to be filled greedily
|
| 1372 |
+
peaks = []
|
| 1373 |
+
|
| 1374 |
+
# Remove onsets which are close together in time
|
| 1375 |
+
last_onset = -np.inf
|
| 1376 |
+
|
| 1377 |
+
for i in np.nonzero(detections)[0]:
|
| 1378 |
+
# Only report an onset if the "wait" samples was reported
|
| 1379 |
+
if i > last_onset + wait:
|
| 1380 |
+
peaks.append(i)
|
| 1381 |
+
# Save last reported onset
|
| 1382 |
+
last_onset = i
|
| 1383 |
+
|
| 1384 |
+
return np.array(peaks)
|
| 1385 |
+
|
| 1386 |
+
|
| 1387 |
+
@cache(level=40)
|
| 1388 |
+
def sparsify_rows(
|
| 1389 |
+
x: np.ndarray, *, quantile: float = 0.01, dtype: Optional[DTypeLike] = None
|
| 1390 |
+
) -> scipy.sparse.csr_matrix:
|
| 1391 |
+
"""Return a row-sparse matrix approximating the input
|
| 1392 |
+
|
| 1393 |
+
Parameters
|
| 1394 |
+
----------
|
| 1395 |
+
x : np.ndarray [ndim <= 2]
|
| 1396 |
+
The input matrix to sparsify.
|
| 1397 |
+
quantile : float in [0, 1.0)
|
| 1398 |
+
Percentage of magnitude to discard in each row of ``x``
|
| 1399 |
+
dtype : np.dtype, optional
|
| 1400 |
+
The dtype of the output array.
|
| 1401 |
+
If not provided, then ``x.dtype`` will be used.
|
| 1402 |
+
|
| 1403 |
+
Returns
|
| 1404 |
+
-------
|
| 1405 |
+
x_sparse : ``scipy.sparse.csr_matrix`` [shape=x.shape]
|
| 1406 |
+
Row-sparsified approximation of ``x``
|
| 1407 |
+
|
| 1408 |
+
If ``x.ndim == 1``, then ``x`` is interpreted as a row vector,
|
| 1409 |
+
and ``x_sparse.shape == (1, len(x))``.
|
| 1410 |
+
|
| 1411 |
+
Raises
|
| 1412 |
+
------
|
| 1413 |
+
ParameterError
|
| 1414 |
+
If ``x.ndim > 2``
|
| 1415 |
+
|
| 1416 |
+
If ``quantile`` lies outside ``[0, 1.0)``
|
| 1417 |
+
|
| 1418 |
+
Notes
|
| 1419 |
+
-----
|
| 1420 |
+
This function caches at level 40.
|
| 1421 |
+
|
| 1422 |
+
Examples
|
| 1423 |
+
--------
|
| 1424 |
+
>>> # Construct a Hann window to sparsify
|
| 1425 |
+
>>> x = scipy.signal.hann(32)
|
| 1426 |
+
>>> x
|
| 1427 |
+
array([ 0. , 0.01 , 0.041, 0.09 , 0.156, 0.236, 0.326,
|
| 1428 |
+
0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937,
|
| 1429 |
+
0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806,
|
| 1430 |
+
0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156,
|
| 1431 |
+
0.09 , 0.041, 0.01 , 0. ])
|
| 1432 |
+
>>> # Discard the bottom percentile
|
| 1433 |
+
>>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.01)
|
| 1434 |
+
>>> x_sparse
|
| 1435 |
+
<1x32 sparse matrix of type '<type 'numpy.float64'>'
|
| 1436 |
+
with 26 stored elements in Compressed Sparse Row format>
|
| 1437 |
+
>>> x_sparse.todense()
|
| 1438 |
+
matrix([[ 0. , 0. , 0. , 0.09 , 0.156, 0.236, 0.326,
|
| 1439 |
+
0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937,
|
| 1440 |
+
0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806,
|
| 1441 |
+
0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156,
|
| 1442 |
+
0.09 , 0. , 0. , 0. ]])
|
| 1443 |
+
>>> # Discard up to the bottom 10th percentile
|
| 1444 |
+
>>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.1)
|
| 1445 |
+
>>> x_sparse
|
| 1446 |
+
<1x32 sparse matrix of type '<type 'numpy.float64'>'
|
| 1447 |
+
with 20 stored elements in Compressed Sparse Row format>
|
| 1448 |
+
>>> x_sparse.todense()
|
| 1449 |
+
matrix([[ 0. , 0. , 0. , 0. , 0. , 0. , 0.326,
|
| 1450 |
+
0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937,
|
| 1451 |
+
0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806,
|
| 1452 |
+
0.72 , 0.625, 0.525, 0.424, 0.326, 0. , 0. ,
|
| 1453 |
+
0. , 0. , 0. , 0. ]])
|
| 1454 |
+
"""
|
| 1455 |
+
|
| 1456 |
+
if x.ndim == 1:
|
| 1457 |
+
x = x.reshape((1, -1))
|
| 1458 |
+
|
| 1459 |
+
elif x.ndim > 2:
|
| 1460 |
+
raise ParameterError(
|
| 1461 |
+
f"Input must have 2 or fewer dimensions. Provided x.shape={x.shape}."
|
| 1462 |
+
)
|
| 1463 |
+
|
| 1464 |
+
if not 0.0 <= quantile < 1:
|
| 1465 |
+
raise ParameterError(f"Invalid quantile {quantile:.2f}")
|
| 1466 |
+
|
| 1467 |
+
if dtype is None:
|
| 1468 |
+
dtype = x.dtype
|
| 1469 |
+
|
| 1470 |
+
x_sparse = scipy.sparse.lil_matrix(x.shape, dtype=dtype)
|
| 1471 |
+
|
| 1472 |
+
mags = np.abs(x)
|
| 1473 |
+
norms = np.sum(mags, axis=1, keepdims=True)
|
| 1474 |
+
|
| 1475 |
+
mag_sort = np.sort(mags, axis=1)
|
| 1476 |
+
cumulative_mag = np.cumsum(mag_sort / norms, axis=1)
|
| 1477 |
+
|
| 1478 |
+
threshold_idx = np.argmin(cumulative_mag < quantile, axis=1)
|
| 1479 |
+
|
| 1480 |
+
for i, j in enumerate(threshold_idx):
|
| 1481 |
+
idx = np.where(mags[i] >= mag_sort[i, j])
|
| 1482 |
+
x_sparse[i, idx] = x[i, idx]
|
| 1483 |
+
|
| 1484 |
+
return x_sparse.tocsr()
|
| 1485 |
+
|
| 1486 |
+
|
| 1487 |
+
def buf_to_float(
|
| 1488 |
+
x: np.ndarray, *, n_bytes: int = 2, dtype: DTypeLike = np.float32
|
| 1489 |
+
) -> np.ndarray:
|
| 1490 |
+
"""Convert an integer buffer to floating point values.
|
| 1491 |
+
This is primarily useful when loading integer-valued wav data
|
| 1492 |
+
into numpy arrays.
|
| 1493 |
+
|
| 1494 |
+
Parameters
|
| 1495 |
+
----------
|
| 1496 |
+
x : np.ndarray [dtype=int]
|
| 1497 |
+
The integer-valued data buffer
|
| 1498 |
+
n_bytes : int [1, 2, 4]
|
| 1499 |
+
The number of bytes per sample in ``x``
|
| 1500 |
+
dtype : numeric type
|
| 1501 |
+
The target output type (default: 32-bit float)
|
| 1502 |
+
|
| 1503 |
+
Returns
|
| 1504 |
+
-------
|
| 1505 |
+
x_float : np.ndarray [dtype=float]
|
| 1506 |
+
The input data buffer cast to floating point
|
| 1507 |
+
"""
|
| 1508 |
+
|
| 1509 |
+
# Invert the scale of the data
|
| 1510 |
+
scale = 1.0 / float(1 << ((8 * n_bytes) - 1))
|
| 1511 |
+
|
| 1512 |
+
# Construct the format string
|
| 1513 |
+
fmt = f"<i{n_bytes:d}"
|
| 1514 |
+
|
| 1515 |
+
# Rescale and format the data buffer
|
| 1516 |
+
return scale * np.frombuffer(x, fmt).astype(dtype)
|
| 1517 |
+
|
| 1518 |
+
|
| 1519 |
+
def index_to_slice(
|
| 1520 |
+
idx: _SequenceLike[int],
|
| 1521 |
+
*,
|
| 1522 |
+
idx_min: Optional[int] = None,
|
| 1523 |
+
idx_max: Optional[int] = None,
|
| 1524 |
+
step: Optional[int] = None,
|
| 1525 |
+
pad: bool = True,
|
| 1526 |
+
) -> List[slice]:
|
| 1527 |
+
"""Generate a slice array from an index array.
|
| 1528 |
+
|
| 1529 |
+
Parameters
|
| 1530 |
+
----------
|
| 1531 |
+
idx : list-like
|
| 1532 |
+
Array of index boundaries
|
| 1533 |
+
idx_min, idx_max : None or int
|
| 1534 |
+
Minimum and maximum allowed indices
|
| 1535 |
+
step : None or int
|
| 1536 |
+
Step size for each slice. If `None`, then the default
|
| 1537 |
+
step of 1 is used.
|
| 1538 |
+
pad : boolean
|
| 1539 |
+
If `True`, pad ``idx`` to span the range ``idx_min:idx_max``.
|
| 1540 |
+
|
| 1541 |
+
Returns
|
| 1542 |
+
-------
|
| 1543 |
+
slices : list of slice
|
| 1544 |
+
``slices[i] = slice(idx[i], idx[i+1], step)``
|
| 1545 |
+
Additional slice objects may be added at the beginning or end,
|
| 1546 |
+
depending on whether ``pad==True`` and the supplied values for
|
| 1547 |
+
``idx_min`` and ``idx_max``.
|
| 1548 |
+
|
| 1549 |
+
See Also
|
| 1550 |
+
--------
|
| 1551 |
+
fix_frames
|
| 1552 |
+
|
| 1553 |
+
Examples
|
| 1554 |
+
--------
|
| 1555 |
+
>>> # Generate slices from spaced indices
|
| 1556 |
+
>>> librosa.util.index_to_slice(np.arange(20, 100, 15))
|
| 1557 |
+
[slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), slice(65, 80, None),
|
| 1558 |
+
slice(80, 95, None)]
|
| 1559 |
+
>>> # Pad to span the range (0, 100)
|
| 1560 |
+
>>> librosa.util.index_to_slice(np.arange(20, 100, 15),
|
| 1561 |
+
... idx_min=0, idx_max=100)
|
| 1562 |
+
[slice(0, 20, None), slice(20, 35, None), slice(35, 50, None), slice(50, 65, None),
|
| 1563 |
+
slice(65, 80, None), slice(80, 95, None), slice(95, 100, None)]
|
| 1564 |
+
>>> # Use a step of 5 for each slice
|
| 1565 |
+
>>> librosa.util.index_to_slice(np.arange(20, 100, 15),
|
| 1566 |
+
... idx_min=0, idx_max=100, step=5)
|
| 1567 |
+
[slice(0, 20, 5), slice(20, 35, 5), slice(35, 50, 5), slice(50, 65, 5), slice(65, 80, 5),
|
| 1568 |
+
slice(80, 95, 5), slice(95, 100, 5)]
|
| 1569 |
+
"""
|
| 1570 |
+
|
| 1571 |
+
# First, normalize the index set
|
| 1572 |
+
idx_fixed = fix_frames(idx, x_min=idx_min, x_max=idx_max, pad=pad)
|
| 1573 |
+
|
| 1574 |
+
# Now convert the indices to slices
|
| 1575 |
+
return [slice(start, end, step) for (start, end) in zip(idx_fixed, idx_fixed[1:])]
|
| 1576 |
+
|
| 1577 |
+
|
| 1578 |
+
@cache(level=40)
|
| 1579 |
+
def sync(
|
| 1580 |
+
data: np.ndarray,
|
| 1581 |
+
idx: Union[Sequence[int], Sequence[slice]],
|
| 1582 |
+
*,
|
| 1583 |
+
aggregate: Optional[Callable[..., Any]] = None,
|
| 1584 |
+
pad: bool = True,
|
| 1585 |
+
axis: int = -1,
|
| 1586 |
+
) -> np.ndarray:
|
| 1587 |
+
"""Synchronous aggregation of a multi-dimensional array between boundaries
|
| 1588 |
+
|
| 1589 |
+
.. note::
|
| 1590 |
+
In order to ensure total coverage, boundary points may be added
|
| 1591 |
+
to ``idx``.
|
| 1592 |
+
|
| 1593 |
+
If synchronizing a feature matrix against beat tracker output, ensure
|
| 1594 |
+
that frame index numbers are properly aligned and use the same hop length.
|
| 1595 |
+
|
| 1596 |
+
Parameters
|
| 1597 |
+
----------
|
| 1598 |
+
data : np.ndarray
|
| 1599 |
+
multi-dimensional array of features
|
| 1600 |
+
idx : sequence of ints or slices
|
| 1601 |
+
Either an ordered array of boundary indices, or
|
| 1602 |
+
an iterable collection of slice objects.
|
| 1603 |
+
aggregate : function
|
| 1604 |
+
aggregation function (default: `np.mean`)
|
| 1605 |
+
pad : boolean
|
| 1606 |
+
If `True`, ``idx`` is padded to span the full range ``[0, data.shape[axis]]``
|
| 1607 |
+
axis : int
|
| 1608 |
+
The axis along which to aggregate data
|
| 1609 |
+
|
| 1610 |
+
Returns
|
| 1611 |
+
-------
|
| 1612 |
+
data_sync : ndarray
|
| 1613 |
+
``data_sync`` will have the same dimension as ``data``, except that the ``axis``
|
| 1614 |
+
coordinate will be reduced according to ``idx``.
|
| 1615 |
+
|
| 1616 |
+
For example, a 2-dimensional ``data`` with ``axis=-1`` should satisfy::
|
| 1617 |
+
|
| 1618 |
+
data_sync[:, i] = aggregate(data[:, idx[i-1]:idx[i]], axis=-1)
|
| 1619 |
+
|
| 1620 |
+
Raises
|
| 1621 |
+
------
|
| 1622 |
+
ParameterError
|
| 1623 |
+
If the index set is not of consistent type (all slices or all integers)
|
| 1624 |
+
|
| 1625 |
+
Notes
|
| 1626 |
+
-----
|
| 1627 |
+
This function caches at level 40.
|
| 1628 |
+
|
| 1629 |
+
Examples
|
| 1630 |
+
--------
|
| 1631 |
+
Beat-synchronous CQT spectra
|
| 1632 |
+
|
| 1633 |
+
>>> y, sr = librosa.load(librosa.ex('choice'))
|
| 1634 |
+
>>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, trim=False)
|
| 1635 |
+
>>> C = np.abs(librosa.cqt(y=y, sr=sr))
|
| 1636 |
+
>>> beats = librosa.util.fix_frames(beats)
|
| 1637 |
+
|
| 1638 |
+
By default, use mean aggregation
|
| 1639 |
+
|
| 1640 |
+
>>> C_avg = librosa.util.sync(C, beats)
|
| 1641 |
+
|
| 1642 |
+
Use median-aggregation instead of mean
|
| 1643 |
+
|
| 1644 |
+
>>> C_med = librosa.util.sync(C, beats,
|
| 1645 |
+
... aggregate=np.median)
|
| 1646 |
+
|
| 1647 |
+
Or sub-beat synchronization
|
| 1648 |
+
|
| 1649 |
+
>>> sub_beats = librosa.segment.subsegment(C, beats)
|
| 1650 |
+
>>> sub_beats = librosa.util.fix_frames(sub_beats)
|
| 1651 |
+
>>> C_med_sub = librosa.util.sync(C, sub_beats, aggregate=np.median)
|
| 1652 |
+
|
| 1653 |
+
Plot the results
|
| 1654 |
+
|
| 1655 |
+
>>> import matplotlib.pyplot as plt
|
| 1656 |
+
>>> beat_t = librosa.frames_to_time(beats, sr=sr)
|
| 1657 |
+
>>> subbeat_t = librosa.frames_to_time(sub_beats, sr=sr)
|
| 1658 |
+
>>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True)
|
| 1659 |
+
>>> librosa.display.specshow(librosa.amplitude_to_db(C,
|
| 1660 |
+
... ref=np.max),
|
| 1661 |
+
... x_axis='time', ax=ax[0])
|
| 1662 |
+
>>> ax[0].set(title='CQT power, shape={}'.format(C.shape))
|
| 1663 |
+
>>> ax[0].label_outer()
|
| 1664 |
+
>>> librosa.display.specshow(librosa.amplitude_to_db(C_med,
|
| 1665 |
+
... ref=np.max),
|
| 1666 |
+
... x_coords=beat_t, x_axis='time', ax=ax[1])
|
| 1667 |
+
>>> ax[1].set(title='Beat synchronous CQT power, '
|
| 1668 |
+
... 'shape={}'.format(C_med.shape))
|
| 1669 |
+
>>> ax[1].label_outer()
|
| 1670 |
+
>>> librosa.display.specshow(librosa.amplitude_to_db(C_med_sub,
|
| 1671 |
+
... ref=np.max),
|
| 1672 |
+
... x_coords=subbeat_t, x_axis='time', ax=ax[2])
|
| 1673 |
+
>>> ax[2].set(title='Sub-beat synchronous CQT power, '
|
| 1674 |
+
... 'shape={}'.format(C_med_sub.shape))
|
| 1675 |
+
"""
|
| 1676 |
+
|
| 1677 |
+
if aggregate is None:
|
| 1678 |
+
aggregate = np.mean
|
| 1679 |
+
|
| 1680 |
+
shape = list(data.shape)
|
| 1681 |
+
|
| 1682 |
+
if np.all([isinstance(_, slice) for _ in idx]):
|
| 1683 |
+
slices = idx
|
| 1684 |
+
elif np.all([np.issubdtype(type(_), np.integer) for _ in idx]):
|
| 1685 |
+
slices = index_to_slice(
|
| 1686 |
+
np.asarray(idx), idx_min=0, idx_max=shape[axis], pad=pad
|
| 1687 |
+
)
|
| 1688 |
+
else:
|
| 1689 |
+
raise ParameterError(f"Invalid index set: {idx}")
|
| 1690 |
+
|
| 1691 |
+
agg_shape = list(shape)
|
| 1692 |
+
agg_shape[axis] = len(slices)
|
| 1693 |
+
|
| 1694 |
+
data_agg = np.empty(
|
| 1695 |
+
agg_shape, order="F" if np.isfortran(data) else "C", dtype=data.dtype
|
| 1696 |
+
)
|
| 1697 |
+
|
| 1698 |
+
idx_in = [slice(None)] * data.ndim
|
| 1699 |
+
idx_agg = [slice(None)] * data_agg.ndim
|
| 1700 |
+
|
| 1701 |
+
for i, segment in enumerate(slices):
|
| 1702 |
+
idx_in[axis] = segment # type: ignore
|
| 1703 |
+
idx_agg[axis] = i # type: ignore
|
| 1704 |
+
data_agg[tuple(idx_agg)] = aggregate(data[tuple(idx_in)], axis=axis)
|
| 1705 |
+
|
| 1706 |
+
return data_agg
|
| 1707 |
+
|
| 1708 |
+
|
| 1709 |
+
def softmask(
|
| 1710 |
+
X: np.ndarray, X_ref: np.ndarray, *, power: float = 1, split_zeros: bool = False
|
| 1711 |
+
) -> np.ndarray:
|
| 1712 |
+
"""Robustly compute a soft-mask operation.
|
| 1713 |
+
|
| 1714 |
+
``M = X**power / (X**power + X_ref**power)``
|
| 1715 |
+
|
| 1716 |
+
Parameters
|
| 1717 |
+
----------
|
| 1718 |
+
X : np.ndarray
|
| 1719 |
+
The (non-negative) input array corresponding to the positive mask elements
|
| 1720 |
+
|
| 1721 |
+
X_ref : np.ndarray
|
| 1722 |
+
The (non-negative) array of reference or background elements.
|
| 1723 |
+
Must have the same shape as ``X``.
|
| 1724 |
+
|
| 1725 |
+
power : number > 0 or np.inf
|
| 1726 |
+
If finite, returns the soft mask computed in a numerically stable way
|
| 1727 |
+
|
| 1728 |
+
If infinite, returns a hard (binary) mask equivalent to ``X > X_ref``.
|
| 1729 |
+
Note: for hard masks, ties are always broken in favor of ``X_ref`` (``mask=0``).
|
| 1730 |
+
|
| 1731 |
+
split_zeros : bool
|
| 1732 |
+
If `True`, entries where ``X`` and ``X_ref`` are both small (close to 0)
|
| 1733 |
+
will receive mask values of 0.5.
|
| 1734 |
+
|
| 1735 |
+
Otherwise, the mask is set to 0 for these entries.
|
| 1736 |
+
|
| 1737 |
+
Returns
|
| 1738 |
+
-------
|
| 1739 |
+
mask : np.ndarray, shape=X.shape
|
| 1740 |
+
The output mask array
|
| 1741 |
+
|
| 1742 |
+
Raises
|
| 1743 |
+
------
|
| 1744 |
+
ParameterError
|
| 1745 |
+
If ``X`` and ``X_ref`` have different shapes.
|
| 1746 |
+
|
| 1747 |
+
If ``X`` or ``X_ref`` are negative anywhere
|
| 1748 |
+
|
| 1749 |
+
If ``power <= 0``
|
| 1750 |
+
|
| 1751 |
+
Examples
|
| 1752 |
+
--------
|
| 1753 |
+
>>> X = 2 * np.ones((3, 3))
|
| 1754 |
+
>>> X_ref = np.vander(np.arange(3.0))
|
| 1755 |
+
>>> X
|
| 1756 |
+
array([[ 2., 2., 2.],
|
| 1757 |
+
[ 2., 2., 2.],
|
| 1758 |
+
[ 2., 2., 2.]])
|
| 1759 |
+
>>> X_ref
|
| 1760 |
+
array([[ 0., 0., 1.],
|
| 1761 |
+
[ 1., 1., 1.],
|
| 1762 |
+
[ 4., 2., 1.]])
|
| 1763 |
+
>>> librosa.util.softmask(X, X_ref, power=1)
|
| 1764 |
+
array([[ 1. , 1. , 0.667],
|
| 1765 |
+
[ 0.667, 0.667, 0.667],
|
| 1766 |
+
[ 0.333, 0.5 , 0.667]])
|
| 1767 |
+
>>> librosa.util.softmask(X_ref, X, power=1)
|
| 1768 |
+
array([[ 0. , 0. , 0.333],
|
| 1769 |
+
[ 0.333, 0.333, 0.333],
|
| 1770 |
+
[ 0.667, 0.5 , 0.333]])
|
| 1771 |
+
>>> librosa.util.softmask(X, X_ref, power=2)
|
| 1772 |
+
array([[ 1. , 1. , 0.8],
|
| 1773 |
+
[ 0.8, 0.8, 0.8],
|
| 1774 |
+
[ 0.2, 0.5, 0.8]])
|
| 1775 |
+
>>> librosa.util.softmask(X, X_ref, power=4)
|
| 1776 |
+
array([[ 1. , 1. , 0.941],
|
| 1777 |
+
[ 0.941, 0.941, 0.941],
|
| 1778 |
+
[ 0.059, 0.5 , 0.941]])
|
| 1779 |
+
>>> librosa.util.softmask(X, X_ref, power=100)
|
| 1780 |
+
array([[ 1.000e+00, 1.000e+00, 1.000e+00],
|
| 1781 |
+
[ 1.000e+00, 1.000e+00, 1.000e+00],
|
| 1782 |
+
[ 7.889e-31, 5.000e-01, 1.000e+00]])
|
| 1783 |
+
>>> librosa.util.softmask(X, X_ref, power=np.inf)
|
| 1784 |
+
array([[ True, True, True],
|
| 1785 |
+
[ True, True, True],
|
| 1786 |
+
[False, False, True]], dtype=bool)
|
| 1787 |
+
"""
|
| 1788 |
+
if X.shape != X_ref.shape:
|
| 1789 |
+
raise ParameterError(f"Shape mismatch: {X.shape}!={X_ref.shape}")
|
| 1790 |
+
|
| 1791 |
+
if np.any(X < 0) or np.any(X_ref < 0):
|
| 1792 |
+
raise ParameterError("X and X_ref must be non-negative")
|
| 1793 |
+
|
| 1794 |
+
if power <= 0:
|
| 1795 |
+
raise ParameterError("power must be strictly positive")
|
| 1796 |
+
|
| 1797 |
+
# We're working with ints, cast to float.
|
| 1798 |
+
dtype = X.dtype
|
| 1799 |
+
if not np.issubdtype(dtype, np.floating):
|
| 1800 |
+
dtype = np.float32
|
| 1801 |
+
|
| 1802 |
+
# Re-scale the input arrays relative to the larger value
|
| 1803 |
+
Z = np.maximum(X, X_ref).astype(dtype)
|
| 1804 |
+
bad_idx = Z < np.finfo(dtype).tiny
|
| 1805 |
+
Z[bad_idx] = 1
|
| 1806 |
+
|
| 1807 |
+
# For finite power, compute the softmask
|
| 1808 |
+
mask: np.ndarray
|
| 1809 |
+
|
| 1810 |
+
if np.isfinite(power):
|
| 1811 |
+
mask = (X / Z) ** power
|
| 1812 |
+
ref_mask = (X_ref / Z) ** power
|
| 1813 |
+
good_idx = ~bad_idx
|
| 1814 |
+
mask[good_idx] /= mask[good_idx] + ref_mask[good_idx]
|
| 1815 |
+
# Wherever energy is below energy in both inputs, split the mask
|
| 1816 |
+
if split_zeros:
|
| 1817 |
+
mask[bad_idx] = 0.5
|
| 1818 |
+
else:
|
| 1819 |
+
mask[bad_idx] = 0.0
|
| 1820 |
+
else:
|
| 1821 |
+
# Otherwise, compute the hard mask
|
| 1822 |
+
mask = X > X_ref
|
| 1823 |
+
|
| 1824 |
+
return mask
|
| 1825 |
+
|
| 1826 |
+
|
| 1827 |
+
def tiny(x: Union[float, np.ndarray]) -> _FloatLike_co:
|
| 1828 |
+
"""Compute the tiny-value corresponding to an input's data type.
|
| 1829 |
+
|
| 1830 |
+
This is the smallest "usable" number representable in ``x.dtype``
|
| 1831 |
+
(e.g., float32).
|
| 1832 |
+
|
| 1833 |
+
This is primarily useful for determining a threshold for
|
| 1834 |
+
numerical underflow in division or multiplication operations.
|
| 1835 |
+
|
| 1836 |
+
Parameters
|
| 1837 |
+
----------
|
| 1838 |
+
x : number or np.ndarray
|
| 1839 |
+
The array to compute the tiny-value for.
|
| 1840 |
+
All that matters here is ``x.dtype``
|
| 1841 |
+
|
| 1842 |
+
Returns
|
| 1843 |
+
-------
|
| 1844 |
+
tiny_value : float
|
| 1845 |
+
The smallest positive usable number for the type of ``x``.
|
| 1846 |
+
If ``x`` is integer-typed, then the tiny value for ``np.float32``
|
| 1847 |
+
is returned instead.
|
| 1848 |
+
|
| 1849 |
+
See Also
|
| 1850 |
+
--------
|
| 1851 |
+
numpy.finfo
|
| 1852 |
+
|
| 1853 |
+
Examples
|
| 1854 |
+
--------
|
| 1855 |
+
For a standard double-precision floating point number:
|
| 1856 |
+
|
| 1857 |
+
>>> librosa.util.tiny(1.0)
|
| 1858 |
+
2.2250738585072014e-308
|
| 1859 |
+
|
| 1860 |
+
Or explicitly as double-precision
|
| 1861 |
+
|
| 1862 |
+
>>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float64))
|
| 1863 |
+
2.2250738585072014e-308
|
| 1864 |
+
|
| 1865 |
+
Or complex numbers
|
| 1866 |
+
|
| 1867 |
+
>>> librosa.util.tiny(1j)
|
| 1868 |
+
2.2250738585072014e-308
|
| 1869 |
+
|
| 1870 |
+
Single-precision floating point:
|
| 1871 |
+
|
| 1872 |
+
>>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float32))
|
| 1873 |
+
1.1754944e-38
|
| 1874 |
+
|
| 1875 |
+
Integer
|
| 1876 |
+
|
| 1877 |
+
>>> librosa.util.tiny(5)
|
| 1878 |
+
1.1754944e-38
|
| 1879 |
+
"""
|
| 1880 |
+
|
| 1881 |
+
# Make sure we have an array view
|
| 1882 |
+
x = np.asarray(x)
|
| 1883 |
+
|
| 1884 |
+
# Only floating types generate a tiny
|
| 1885 |
+
if np.issubdtype(x.dtype, np.floating) or np.issubdtype(
|
| 1886 |
+
x.dtype, np.complexfloating
|
| 1887 |
+
):
|
| 1888 |
+
dtype = x.dtype
|
| 1889 |
+
else:
|
| 1890 |
+
dtype = np.dtype(np.float32)
|
| 1891 |
+
|
| 1892 |
+
return np.finfo(dtype).tiny
|
| 1893 |
+
|
| 1894 |
+
|
| 1895 |
+
def fill_off_diagonal(x: np.ndarray, *, radius: float, value: float = 0) -> None:
|
| 1896 |
+
"""Sets all cells of a matrix to a given ``value``
|
| 1897 |
+
if they lie outside a constraint region.
|
| 1898 |
+
|
| 1899 |
+
In this case, the constraint region is the
|
| 1900 |
+
Sakoe-Chiba band which runs with a fixed ``radius``
|
| 1901 |
+
along the main diagonal.
|
| 1902 |
+
|
| 1903 |
+
When ``x.shape[0] != x.shape[1]``, the radius will be
|
| 1904 |
+
expanded so that ``x[-1, -1] = 1`` always.
|
| 1905 |
+
|
| 1906 |
+
``x`` will be modified in place.
|
| 1907 |
+
|
| 1908 |
+
Parameters
|
| 1909 |
+
----------
|
| 1910 |
+
x : np.ndarray [shape=(N, M)]
|
| 1911 |
+
Input matrix, will be modified in place.
|
| 1912 |
+
radius : float
|
| 1913 |
+
The band radius (1/2 of the width) will be
|
| 1914 |
+
``int(radius*min(x.shape))``
|
| 1915 |
+
value : float
|
| 1916 |
+
``x[n, m] = value`` when ``(n, m)`` lies outside the band.
|
| 1917 |
+
|
| 1918 |
+
Examples
|
| 1919 |
+
--------
|
| 1920 |
+
>>> x = np.ones((8, 8))
|
| 1921 |
+
>>> librosa.util.fill_off_diagonal(x, radius=0.25)
|
| 1922 |
+
>>> x
|
| 1923 |
+
array([[1, 1, 0, 0, 0, 0, 0, 0],
|
| 1924 |
+
[1, 1, 1, 0, 0, 0, 0, 0],
|
| 1925 |
+
[0, 1, 1, 1, 0, 0, 0, 0],
|
| 1926 |
+
[0, 0, 1, 1, 1, 0, 0, 0],
|
| 1927 |
+
[0, 0, 0, 1, 1, 1, 0, 0],
|
| 1928 |
+
[0, 0, 0, 0, 1, 1, 1, 0],
|
| 1929 |
+
[0, 0, 0, 0, 0, 1, 1, 1],
|
| 1930 |
+
[0, 0, 0, 0, 0, 0, 1, 1]])
|
| 1931 |
+
>>> x = np.ones((8, 12))
|
| 1932 |
+
>>> librosa.util.fill_off_diagonal(x, radius=0.25)
|
| 1933 |
+
>>> x
|
| 1934 |
+
array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
|
| 1935 |
+
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
|
| 1936 |
+
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
|
| 1937 |
+
[0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
| 1938 |
+
[0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
|
| 1939 |
+
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
|
| 1940 |
+
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
|
| 1941 |
+
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]])
|
| 1942 |
+
"""
|
| 1943 |
+
nx, ny = x.shape
|
| 1944 |
+
|
| 1945 |
+
# Calculate the radius in indices, rather than proportion
|
| 1946 |
+
radius = int(np.round(radius * np.min(x.shape)))
|
| 1947 |
+
|
| 1948 |
+
nx, ny = x.shape
|
| 1949 |
+
offset = np.abs((x.shape[0] - x.shape[1]))
|
| 1950 |
+
|
| 1951 |
+
if nx < ny:
|
| 1952 |
+
idx_u = np.triu_indices_from(x, k=radius + offset)
|
| 1953 |
+
idx_l = np.tril_indices_from(x, k=-radius)
|
| 1954 |
+
else:
|
| 1955 |
+
idx_u = np.triu_indices_from(x, k=radius)
|
| 1956 |
+
idx_l = np.tril_indices_from(x, k=-radius - offset)
|
| 1957 |
+
|
| 1958 |
+
# modify input matrix
|
| 1959 |
+
x[idx_u] = value
|
| 1960 |
+
x[idx_l] = value
|
| 1961 |
+
|
| 1962 |
+
|
| 1963 |
+
def cyclic_gradient(
|
| 1964 |
+
data: np.ndarray, *, edge_order: Literal[1, 2] = 1, axis: int = -1
|
| 1965 |
+
) -> np.ndarray:
|
| 1966 |
+
"""Estimate the gradient of a function over a uniformly sampled,
|
| 1967 |
+
periodic domain.
|
| 1968 |
+
|
| 1969 |
+
This is essentially the same as `np.gradient`, except that edge effects
|
| 1970 |
+
are handled by wrapping the observations (i.e. assuming periodicity)
|
| 1971 |
+
rather than extrapolation.
|
| 1972 |
+
|
| 1973 |
+
Parameters
|
| 1974 |
+
----------
|
| 1975 |
+
data : np.ndarray
|
| 1976 |
+
The function values observed at uniformly spaced positions on
|
| 1977 |
+
a periodic domain
|
| 1978 |
+
edge_order : {1, 2}
|
| 1979 |
+
The order of the difference approximation used for estimating
|
| 1980 |
+
the gradient
|
| 1981 |
+
axis : int
|
| 1982 |
+
The axis along which gradients are calculated.
|
| 1983 |
+
|
| 1984 |
+
Returns
|
| 1985 |
+
-------
|
| 1986 |
+
grad : np.ndarray like ``data``
|
| 1987 |
+
The gradient of ``data`` taken along the specified axis.
|
| 1988 |
+
|
| 1989 |
+
See Also
|
| 1990 |
+
--------
|
| 1991 |
+
numpy.gradient
|
| 1992 |
+
|
| 1993 |
+
Examples
|
| 1994 |
+
--------
|
| 1995 |
+
This example estimates the gradient of cosine (-sine) from 64
|
| 1996 |
+
samples using direct (aperiodic) and periodic gradient
|
| 1997 |
+
calculation.
|
| 1998 |
+
|
| 1999 |
+
>>> import matplotlib.pyplot as plt
|
| 2000 |
+
>>> x = 2 * np.pi * np.linspace(0, 1, num=64, endpoint=False)
|
| 2001 |
+
>>> y = np.cos(x)
|
| 2002 |
+
>>> grad = np.gradient(y)
|
| 2003 |
+
>>> cyclic_grad = librosa.util.cyclic_gradient(y)
|
| 2004 |
+
>>> true_grad = -np.sin(x) * 2 * np.pi / len(x)
|
| 2005 |
+
>>> fig, ax = plt.subplots()
|
| 2006 |
+
>>> ax.plot(x, true_grad, label='True gradient', linewidth=5,
|
| 2007 |
+
... alpha=0.35)
|
| 2008 |
+
>>> ax.plot(x, cyclic_grad, label='cyclic_gradient')
|
| 2009 |
+
>>> ax.plot(x, grad, label='np.gradient', linestyle=':')
|
| 2010 |
+
>>> ax.legend()
|
| 2011 |
+
>>> # Zoom into the first part of the sequence
|
| 2012 |
+
>>> ax.set(xlim=[0, np.pi/16], ylim=[-0.025, 0.025])
|
| 2013 |
+
"""
|
| 2014 |
+
# Wrap-pad the data along the target axis by `edge_order` on each side
|
| 2015 |
+
padding = [(0, 0)] * data.ndim
|
| 2016 |
+
padding[axis] = (edge_order, edge_order)
|
| 2017 |
+
data_pad = np.pad(data, padding, mode="wrap")
|
| 2018 |
+
|
| 2019 |
+
# Compute the gradient
|
| 2020 |
+
grad = np.gradient(data_pad, edge_order=edge_order, axis=axis)
|
| 2021 |
+
|
| 2022 |
+
# Remove the padding
|
| 2023 |
+
slices = [slice(None)] * data.ndim
|
| 2024 |
+
slices[axis] = slice(edge_order, -edge_order)
|
| 2025 |
+
grad_slice: np.ndarray = grad[tuple(slices)]
|
| 2026 |
+
return grad_slice
|
| 2027 |
+
|
| 2028 |
+
|
| 2029 |
+
@numba.jit(nopython=True, cache=False) # type: ignore
|
| 2030 |
+
def __shear_dense(X: np.ndarray, *, factor: int = +1, axis: int = -1) -> np.ndarray:
|
| 2031 |
+
"""Numba-accelerated shear for dense (ndarray) arrays"""
|
| 2032 |
+
|
| 2033 |
+
if axis == 0:
|
| 2034 |
+
X = X.T
|
| 2035 |
+
|
| 2036 |
+
X_shear = np.empty_like(X)
|
| 2037 |
+
|
| 2038 |
+
for i in range(X.shape[1]):
|
| 2039 |
+
X_shear[:, i] = np.roll(X[:, i], factor * i)
|
| 2040 |
+
|
| 2041 |
+
if axis == 0:
|
| 2042 |
+
X_shear = X_shear.T
|
| 2043 |
+
|
| 2044 |
+
return X_shear
|
| 2045 |
+
|
| 2046 |
+
|
| 2047 |
+
def __shear_sparse(
|
| 2048 |
+
X: scipy.sparse.spmatrix, *, factor: int = +1, axis: int = -1
|
| 2049 |
+
) -> scipy.sparse.spmatrix:
|
| 2050 |
+
"""Fast shearing for sparse matrices
|
| 2051 |
+
|
| 2052 |
+
Shearing is performed using CSC array indices,
|
| 2053 |
+
and the result is converted back to whatever sparse format
|
| 2054 |
+
the data was originally provided in.
|
| 2055 |
+
"""
|
| 2056 |
+
fmt = X.format
|
| 2057 |
+
if axis == 0:
|
| 2058 |
+
X = X.T
|
| 2059 |
+
|
| 2060 |
+
# Now we're definitely rolling on the correct axis
|
| 2061 |
+
X_shear = X.tocsc(copy=True)
|
| 2062 |
+
|
| 2063 |
+
# The idea here is to repeat the shear amount (factor * range)
|
| 2064 |
+
# by the number of non-zeros for each column.
|
| 2065 |
+
# The number of non-zeros is computed by diffing the index pointer array
|
| 2066 |
+
roll = np.repeat(factor * np.arange(X_shear.shape[1]), np.diff(X_shear.indptr))
|
| 2067 |
+
|
| 2068 |
+
# In-place roll
|
| 2069 |
+
np.mod(X_shear.indices + roll, X_shear.shape[0], out=X_shear.indices)
|
| 2070 |
+
|
| 2071 |
+
if axis == 0:
|
| 2072 |
+
X_shear = X_shear.T
|
| 2073 |
+
|
| 2074 |
+
# And convert back to the input format
|
| 2075 |
+
return X_shear.asformat(fmt)
|
| 2076 |
+
|
| 2077 |
+
|
| 2078 |
+
_ArrayOrSparseMatrix = TypeVar(
|
| 2079 |
+
"_ArrayOrSparseMatrix", bound=Union[np.ndarray, scipy.sparse.spmatrix]
|
| 2080 |
+
)
|
| 2081 |
+
|
| 2082 |
+
|
| 2083 |
+
@overload
|
| 2084 |
+
def shear(X: np.ndarray, *, factor: int = ..., axis: int = ...) -> np.ndarray:
|
| 2085 |
+
...
|
| 2086 |
+
|
| 2087 |
+
|
| 2088 |
+
@overload
|
| 2089 |
+
def shear(
|
| 2090 |
+
X: scipy.sparse.spmatrix, *, factor: int = ..., axis: int = ...
|
| 2091 |
+
) -> scipy.sparse.spmatrix:
|
| 2092 |
+
...
|
| 2093 |
+
|
| 2094 |
+
|
| 2095 |
+
def shear(
|
| 2096 |
+
X: _ArrayOrSparseMatrix, *, factor: int = 1, axis: int = -1
|
| 2097 |
+
) -> _ArrayOrSparseMatrix:
|
| 2098 |
+
"""Shear a matrix by a given factor.
|
| 2099 |
+
|
| 2100 |
+
The column ``X[:, n]`` will be displaced (rolled)
|
| 2101 |
+
by ``factor * n``
|
| 2102 |
+
|
| 2103 |
+
This is primarily useful for converting between lag and recurrence
|
| 2104 |
+
representations: shearing with ``factor=-1`` converts the main diagonal
|
| 2105 |
+
to a horizontal. Shearing with ``factor=1`` converts a horizontal to
|
| 2106 |
+
a diagonal.
|
| 2107 |
+
|
| 2108 |
+
Parameters
|
| 2109 |
+
----------
|
| 2110 |
+
X : np.ndarray [ndim=2] or scipy.sparse matrix
|
| 2111 |
+
The array to be sheared
|
| 2112 |
+
factor : integer
|
| 2113 |
+
The shear factor: ``X[:, n] -> np.roll(X[:, n], factor * n)``
|
| 2114 |
+
axis : integer
|
| 2115 |
+
The axis along which to shear
|
| 2116 |
+
|
| 2117 |
+
Returns
|
| 2118 |
+
-------
|
| 2119 |
+
X_shear : same type as ``X``
|
| 2120 |
+
The sheared matrix
|
| 2121 |
+
|
| 2122 |
+
Examples
|
| 2123 |
+
--------
|
| 2124 |
+
>>> E = np.eye(3)
|
| 2125 |
+
>>> librosa.util.shear(E, factor=-1, axis=-1)
|
| 2126 |
+
array([[1., 1., 1.],
|
| 2127 |
+
[0., 0., 0.],
|
| 2128 |
+
[0., 0., 0.]])
|
| 2129 |
+
>>> librosa.util.shear(E, factor=-1, axis=0)
|
| 2130 |
+
array([[1., 0., 0.],
|
| 2131 |
+
[1., 0., 0.],
|
| 2132 |
+
[1., 0., 0.]])
|
| 2133 |
+
>>> librosa.util.shear(E, factor=1, axis=-1)
|
| 2134 |
+
array([[1., 0., 0.],
|
| 2135 |
+
[0., 0., 1.],
|
| 2136 |
+
[0., 1., 0.]])
|
| 2137 |
+
"""
|
| 2138 |
+
|
| 2139 |
+
if not np.issubdtype(type(factor), np.integer):
|
| 2140 |
+
raise ParameterError(f"factor={factor} must be integer-valued")
|
| 2141 |
+
|
| 2142 |
+
# Suppress type checks because mypy doesn't like numba jitting
|
| 2143 |
+
# or scipy sparse conversion
|
| 2144 |
+
if scipy.sparse.isspmatrix(X):
|
| 2145 |
+
return __shear_sparse(X, factor=factor, axis=axis) # type: ignore
|
| 2146 |
+
else:
|
| 2147 |
+
return __shear_dense(X, factor=factor, axis=axis) # type: ignore
|
| 2148 |
+
|
| 2149 |
+
|
| 2150 |
+
def stack(arrays: List[np.ndarray], *, axis: int = 0) -> np.ndarray:
|
| 2151 |
+
"""Stack one or more arrays along a target axis.
|
| 2152 |
+
|
| 2153 |
+
This function is similar to `np.stack`, except that memory contiguity is
|
| 2154 |
+
retained when stacking along the first dimension.
|
| 2155 |
+
|
| 2156 |
+
This is useful when combining multiple monophonic audio signals into a
|
| 2157 |
+
multi-channel signal, or when stacking multiple feature representations
|
| 2158 |
+
to form a multi-dimensional array.
|
| 2159 |
+
|
| 2160 |
+
Parameters
|
| 2161 |
+
----------
|
| 2162 |
+
arrays : list
|
| 2163 |
+
one or more `np.ndarray`
|
| 2164 |
+
axis : integer
|
| 2165 |
+
The target axis along which to stack. ``axis=0`` creates a new first axis,
|
| 2166 |
+
and ``axis=-1`` creates a new last axis.
|
| 2167 |
+
|
| 2168 |
+
Returns
|
| 2169 |
+
-------
|
| 2170 |
+
arr_stack : np.ndarray [shape=(len(arrays), array_shape) or shape=(array_shape, len(arrays))]
|
| 2171 |
+
The input arrays, stacked along the target dimension.
|
| 2172 |
+
|
| 2173 |
+
If ``axis=0``, then ``arr_stack`` will be F-contiguous.
|
| 2174 |
+
Otherwise, ``arr_stack`` will be C-contiguous by default, as computed by
|
| 2175 |
+
`np.stack`.
|
| 2176 |
+
|
| 2177 |
+
Raises
|
| 2178 |
+
------
|
| 2179 |
+
ParameterError
|
| 2180 |
+
- If ``arrays`` do not all have the same shape
|
| 2181 |
+
- If no ``arrays`` are given
|
| 2182 |
+
|
| 2183 |
+
See Also
|
| 2184 |
+
--------
|
| 2185 |
+
numpy.stack
|
| 2186 |
+
numpy.ndarray.flags
|
| 2187 |
+
frame
|
| 2188 |
+
|
| 2189 |
+
Examples
|
| 2190 |
+
--------
|
| 2191 |
+
Combine two buffers into a contiguous arrays
|
| 2192 |
+
|
| 2193 |
+
>>> y_left = np.ones(5)
|
| 2194 |
+
>>> y_right = -np.ones(5)
|
| 2195 |
+
>>> y_stereo = librosa.util.stack([y_left, y_right], axis=0)
|
| 2196 |
+
>>> y_stereo
|
| 2197 |
+
array([[ 1., 1., 1., 1., 1.],
|
| 2198 |
+
[-1., -1., -1., -1., -1.]])
|
| 2199 |
+
>>> y_stereo.flags
|
| 2200 |
+
C_CONTIGUOUS : False
|
| 2201 |
+
F_CONTIGUOUS : True
|
| 2202 |
+
OWNDATA : True
|
| 2203 |
+
WRITEABLE : True
|
| 2204 |
+
ALIGNED : True
|
| 2205 |
+
WRITEBACKIFCOPY : False
|
| 2206 |
+
UPDATEIFCOPY : False
|
| 2207 |
+
|
| 2208 |
+
Or along the trailing axis
|
| 2209 |
+
|
| 2210 |
+
>>> y_stereo = librosa.util.stack([y_left, y_right], axis=-1)
|
| 2211 |
+
>>> y_stereo
|
| 2212 |
+
array([[ 1., -1.],
|
| 2213 |
+
[ 1., -1.],
|
| 2214 |
+
[ 1., -1.],
|
| 2215 |
+
[ 1., -1.],
|
| 2216 |
+
[ 1., -1.]])
|
| 2217 |
+
>>> y_stereo.flags
|
| 2218 |
+
C_CONTIGUOUS : True
|
| 2219 |
+
F_CONTIGUOUS : False
|
| 2220 |
+
OWNDATA : True
|
| 2221 |
+
WRITEABLE : True
|
| 2222 |
+
ALIGNED : True
|
| 2223 |
+
WRITEBACKIFCOPY : False
|
| 2224 |
+
UPDATEIFCOPY : False
|
| 2225 |
+
"""
|
| 2226 |
+
|
| 2227 |
+
shapes = {arr.shape for arr in arrays}
|
| 2228 |
+
if len(shapes) > 1:
|
| 2229 |
+
raise ParameterError("all input arrays must have the same shape")
|
| 2230 |
+
elif len(shapes) < 1:
|
| 2231 |
+
raise ParameterError("at least one input array must be provided for stack")
|
| 2232 |
+
|
| 2233 |
+
shape_in = shapes.pop()
|
| 2234 |
+
|
| 2235 |
+
if axis != 0:
|
| 2236 |
+
return np.stack(arrays, axis=axis)
|
| 2237 |
+
else:
|
| 2238 |
+
# If axis is 0, enforce F-ordering
|
| 2239 |
+
shape = tuple([len(arrays)] + list(shape_in))
|
| 2240 |
+
|
| 2241 |
+
# Find the common dtype for all inputs
|
| 2242 |
+
dtype = np.find_common_type([arr.dtype for arr in arrays], [])
|
| 2243 |
+
|
| 2244 |
+
# Allocate an empty array of the right shape and type
|
| 2245 |
+
result = np.empty(shape, dtype=dtype, order="F")
|
| 2246 |
+
|
| 2247 |
+
# Stack into the preallocated buffer
|
| 2248 |
+
np.stack(arrays, axis=axis, out=result)
|
| 2249 |
+
|
| 2250 |
+
return result
|
| 2251 |
+
|
| 2252 |
+
|
| 2253 |
+
def dtype_r2c(d: DTypeLike, *, default: Optional[type] = np.complex64) -> DTypeLike:
|
| 2254 |
+
"""Find the complex numpy dtype corresponding to a real dtype.
|
| 2255 |
+
|
| 2256 |
+
This is used to maintain numerical precision and memory footprint
|
| 2257 |
+
when constructing complex arrays from real-valued data
|
| 2258 |
+
(e.g. in a Fourier transform).
|
| 2259 |
+
|
| 2260 |
+
A `float32` (single-precision) type maps to `complex64`,
|
| 2261 |
+
while a `float64` (double-precision) maps to `complex128`.
|
| 2262 |
+
|
| 2263 |
+
Parameters
|
| 2264 |
+
----------
|
| 2265 |
+
d : np.dtype
|
| 2266 |
+
The real-valued dtype to convert to complex.
|
| 2267 |
+
If ``d`` is a complex type already, it will be returned.
|
| 2268 |
+
default : np.dtype, optional
|
| 2269 |
+
The default complex target type, if ``d`` does not match a
|
| 2270 |
+
known dtype
|
| 2271 |
+
|
| 2272 |
+
Returns
|
| 2273 |
+
-------
|
| 2274 |
+
d_c : np.dtype
|
| 2275 |
+
The complex dtype
|
| 2276 |
+
|
| 2277 |
+
See Also
|
| 2278 |
+
--------
|
| 2279 |
+
dtype_c2r
|
| 2280 |
+
numpy.dtype
|
| 2281 |
+
|
| 2282 |
+
Examples
|
| 2283 |
+
--------
|
| 2284 |
+
>>> librosa.util.dtype_r2c(np.float32)
|
| 2285 |
+
dtype('complex64')
|
| 2286 |
+
|
| 2287 |
+
>>> librosa.util.dtype_r2c(np.int16)
|
| 2288 |
+
dtype('complex64')
|
| 2289 |
+
|
| 2290 |
+
>>> librosa.util.dtype_r2c(np.complex128)
|
| 2291 |
+
dtype('complex128')
|
| 2292 |
+
"""
|
| 2293 |
+
mapping: Dict[DTypeLike, type] = {
|
| 2294 |
+
np.dtype(np.float32): np.complex64,
|
| 2295 |
+
np.dtype(np.float64): np.complex128,
|
| 2296 |
+
np.dtype(float): np.dtype(complex).type,
|
| 2297 |
+
}
|
| 2298 |
+
|
| 2299 |
+
# If we're given a complex type already, return it
|
| 2300 |
+
dt = np.dtype(d)
|
| 2301 |
+
if dt.kind == "c":
|
| 2302 |
+
return dt
|
| 2303 |
+
|
| 2304 |
+
# Otherwise, try to map the dtype.
|
| 2305 |
+
# If no match is found, return the default.
|
| 2306 |
+
return np.dtype(mapping.get(dt, default))
|
| 2307 |
+
|
| 2308 |
+
|
| 2309 |
+
def dtype_c2r(d: DTypeLike, *, default: Optional[type] = np.float32) -> DTypeLike:
|
| 2310 |
+
"""Find the real numpy dtype corresponding to a complex dtype.
|
| 2311 |
+
|
| 2312 |
+
This is used to maintain numerical precision and memory footprint
|
| 2313 |
+
when constructing real arrays from complex-valued data
|
| 2314 |
+
(e.g. in an inverse Fourier transform).
|
| 2315 |
+
|
| 2316 |
+
A `complex64` (single-precision) type maps to `float32`,
|
| 2317 |
+
while a `complex128` (double-precision) maps to `float64`.
|
| 2318 |
+
|
| 2319 |
+
Parameters
|
| 2320 |
+
----------
|
| 2321 |
+
d : np.dtype
|
| 2322 |
+
The complex-valued dtype to convert to real.
|
| 2323 |
+
If ``d`` is a real (float) type already, it will be returned.
|
| 2324 |
+
default : np.dtype, optional
|
| 2325 |
+
The default real target type, if ``d`` does not match a
|
| 2326 |
+
known dtype
|
| 2327 |
+
|
| 2328 |
+
Returns
|
| 2329 |
+
-------
|
| 2330 |
+
d_r : np.dtype
|
| 2331 |
+
The real dtype
|
| 2332 |
+
|
| 2333 |
+
See Also
|
| 2334 |
+
--------
|
| 2335 |
+
dtype_r2c
|
| 2336 |
+
numpy.dtype
|
| 2337 |
+
|
| 2338 |
+
Examples
|
| 2339 |
+
--------
|
| 2340 |
+
>>> librosa.util.dtype_r2c(np.complex64)
|
| 2341 |
+
dtype('float32')
|
| 2342 |
+
|
| 2343 |
+
>>> librosa.util.dtype_r2c(np.float32)
|
| 2344 |
+
dtype('float32')
|
| 2345 |
+
|
| 2346 |
+
>>> librosa.util.dtype_r2c(np.int16)
|
| 2347 |
+
dtype('float32')
|
| 2348 |
+
|
| 2349 |
+
>>> librosa.util.dtype_r2c(np.complex128)
|
| 2350 |
+
dtype('float64')
|
| 2351 |
+
"""
|
| 2352 |
+
mapping: Dict[DTypeLike, type] = {
|
| 2353 |
+
np.dtype(np.complex64): np.float32,
|
| 2354 |
+
np.dtype(np.complex128): np.float64,
|
| 2355 |
+
np.dtype(complex): np.dtype(float).type,
|
| 2356 |
+
}
|
| 2357 |
+
|
| 2358 |
+
# If we're given a real type already, return it
|
| 2359 |
+
dt = np.dtype(d)
|
| 2360 |
+
if dt.kind == "f":
|
| 2361 |
+
return dt
|
| 2362 |
+
|
| 2363 |
+
# Otherwise, try to map the dtype.
|
| 2364 |
+
# If no match is found, return the default.
|
| 2365 |
+
return np.dtype(mapping.get(dt, default))
|
| 2366 |
+
|
| 2367 |
+
|
| 2368 |
+
@numba.jit(nopython=True, cache=False)
|
| 2369 |
+
def __count_unique(x):
|
| 2370 |
+
"""Counts the number of unique values in an array.
|
| 2371 |
+
|
| 2372 |
+
This function is a helper for `count_unique` and is not
|
| 2373 |
+
to be called directly.
|
| 2374 |
+
"""
|
| 2375 |
+
uniques = np.unique(x)
|
| 2376 |
+
return uniques.shape[0]
|
| 2377 |
+
|
| 2378 |
+
|
| 2379 |
+
def count_unique(data: np.ndarray, *, axis: int = -1) -> np.ndarray:
|
| 2380 |
+
"""Count the number of unique values in a multi-dimensional array
|
| 2381 |
+
along a given axis.
|
| 2382 |
+
|
| 2383 |
+
Parameters
|
| 2384 |
+
----------
|
| 2385 |
+
data : np.ndarray
|
| 2386 |
+
The input array
|
| 2387 |
+
axis : int
|
| 2388 |
+
The target axis to count
|
| 2389 |
+
|
| 2390 |
+
Returns
|
| 2391 |
+
-------
|
| 2392 |
+
n_uniques
|
| 2393 |
+
The number of unique values.
|
| 2394 |
+
This array will have one fewer dimension than the input.
|
| 2395 |
+
|
| 2396 |
+
See Also
|
| 2397 |
+
--------
|
| 2398 |
+
is_unique
|
| 2399 |
+
|
| 2400 |
+
Examples
|
| 2401 |
+
--------
|
| 2402 |
+
>>> x = np.vander(np.arange(5))
|
| 2403 |
+
>>> x
|
| 2404 |
+
array([[ 0, 0, 0, 0, 1],
|
| 2405 |
+
[ 1, 1, 1, 1, 1],
|
| 2406 |
+
[ 16, 8, 4, 2, 1],
|
| 2407 |
+
[ 81, 27, 9, 3, 1],
|
| 2408 |
+
[256, 64, 16, 4, 1]])
|
| 2409 |
+
>>> # Count unique values along rows (within columns)
|
| 2410 |
+
>>> librosa.util.count_unique(x, axis=0)
|
| 2411 |
+
array([5, 5, 5, 5, 1])
|
| 2412 |
+
>>> # Count unique values along columns (within rows)
|
| 2413 |
+
>>> librosa.util.count_unique(x, axis=-1)
|
| 2414 |
+
array([2, 1, 5, 5, 5])
|
| 2415 |
+
"""
|
| 2416 |
+
return np.apply_along_axis(__count_unique, axis, data)
|
| 2417 |
+
|
| 2418 |
+
|
| 2419 |
+
@numba.jit(nopython=True, cache=False)
|
| 2420 |
+
def __is_unique(x):
|
| 2421 |
+
"""Determines if the input array has all unique values.
|
| 2422 |
+
|
| 2423 |
+
This function is a helper for `is_unique` and is not
|
| 2424 |
+
to be called directly.
|
| 2425 |
+
"""
|
| 2426 |
+
|
| 2427 |
+
uniques = np.unique(x)
|
| 2428 |
+
return uniques.shape[0] == x.size
|
| 2429 |
+
|
| 2430 |
+
|
| 2431 |
+
def is_unique(data: np.ndarray, *, axis: int = -1) -> np.ndarray:
|
| 2432 |
+
"""Determine if the input array consists of all unique values
|
| 2433 |
+
along a given axis.
|
| 2434 |
+
|
| 2435 |
+
Parameters
|
| 2436 |
+
----------
|
| 2437 |
+
data : np.ndarray
|
| 2438 |
+
The input array
|
| 2439 |
+
axis : int
|
| 2440 |
+
The target axis
|
| 2441 |
+
|
| 2442 |
+
Returns
|
| 2443 |
+
-------
|
| 2444 |
+
is_unique
|
| 2445 |
+
Array of booleans indicating whether the data is unique along the chosen
|
| 2446 |
+
axis.
|
| 2447 |
+
This array will have one fewer dimension than the input.
|
| 2448 |
+
|
| 2449 |
+
See Also
|
| 2450 |
+
--------
|
| 2451 |
+
count_unique
|
| 2452 |
+
|
| 2453 |
+
Examples
|
| 2454 |
+
--------
|
| 2455 |
+
>>> x = np.vander(np.arange(5))
|
| 2456 |
+
>>> x
|
| 2457 |
+
array([[ 0, 0, 0, 0, 1],
|
| 2458 |
+
[ 1, 1, 1, 1, 1],
|
| 2459 |
+
[ 16, 8, 4, 2, 1],
|
| 2460 |
+
[ 81, 27, 9, 3, 1],
|
| 2461 |
+
[256, 64, 16, 4, 1]])
|
| 2462 |
+
>>> # Check uniqueness along rows
|
| 2463 |
+
>>> librosa.util.is_unique(x, axis=0)
|
| 2464 |
+
array([ True, True, True, True, False])
|
| 2465 |
+
>>> # Check uniqueness along columns
|
| 2466 |
+
>>> librosa.util.is_unique(x, axis=-1)
|
| 2467 |
+
array([False, False, True, True, True])
|
| 2468 |
+
|
| 2469 |
+
"""
|
| 2470 |
+
|
| 2471 |
+
return np.apply_along_axis(__is_unique, axis, data)
|
| 2472 |
+
|
| 2473 |
+
|
| 2474 |
+
@numba.vectorize(
|
| 2475 |
+
["float32(complex64)", "float64(complex128)"], nopython=True, cache=True, identity=0
|
| 2476 |
+
) # type: ignore
|
| 2477 |
+
def _cabs2(x: _ComplexLike_co) -> _FloatLike_co: # pragma: no cover
|
| 2478 |
+
"""Helper function for efficiently computing abs2 on complex inputs"""
|
| 2479 |
+
return x.real**2 + x.imag**2
|
| 2480 |
+
|
| 2481 |
+
|
| 2482 |
+
_Number = Union[complex, "np.number[Any]"]
|
| 2483 |
+
_NumberOrArray = TypeVar("_NumberOrArray", bound=Union[_Number, np.ndarray])
|
| 2484 |
+
|
| 2485 |
+
|
| 2486 |
+
def abs2(x: _NumberOrArray, dtype: Optional[DTypeLike] = None) -> _NumberOrArray:
|
| 2487 |
+
"""Compute the squared magnitude of a real or complex array.
|
| 2488 |
+
|
| 2489 |
+
This function is equivalent to calling `np.abs(x)**2` but it
|
| 2490 |
+
is slightly more efficient.
|
| 2491 |
+
|
| 2492 |
+
Parameters
|
| 2493 |
+
----------
|
| 2494 |
+
x : np.ndarray or scalar, real or complex typed
|
| 2495 |
+
The input data, either real (float32, float64) or complex (complex64, complex128) typed
|
| 2496 |
+
dtype : np.dtype, optional
|
| 2497 |
+
The data type of the output array.
|
| 2498 |
+
If not provided, it will be inferred from `x`
|
| 2499 |
+
|
| 2500 |
+
Returns
|
| 2501 |
+
-------
|
| 2502 |
+
p : np.ndarray or scale, real
|
| 2503 |
+
squared magnitude of `x`
|
| 2504 |
+
|
| 2505 |
+
Examples
|
| 2506 |
+
--------
|
| 2507 |
+
>>> librosa.util.abs2(3 + 4j)
|
| 2508 |
+
25.0
|
| 2509 |
+
|
| 2510 |
+
>>> librosa.util.abs2((0.5j)**np.arange(8))
|
| 2511 |
+
array([1.000e+00, 2.500e-01, 6.250e-02, 1.562e-02, 3.906e-03, 9.766e-04,
|
| 2512 |
+
2.441e-04, 6.104e-05])
|
| 2513 |
+
"""
|
| 2514 |
+
if np.iscomplexobj(x):
|
| 2515 |
+
# suppress type check, mypy doesn't like vectorization
|
| 2516 |
+
y = _cabs2(x)
|
| 2517 |
+
if dtype is None:
|
| 2518 |
+
return y # type: ignore
|
| 2519 |
+
else:
|
| 2520 |
+
return y.astype(dtype) # type: ignore
|
| 2521 |
+
else:
|
| 2522 |
+
# suppress type check, mypy doesn't know this is real
|
| 2523 |
+
return np.power(x, 2, dtype=dtype) # type: ignore
|
| 2524 |
+
|
| 2525 |
+
|
| 2526 |
+
@numba.vectorize(
|
| 2527 |
+
["complex64(float32)", "complex128(float64)"], nopython=True, cache=False, identity=1
|
| 2528 |
+
) # type: ignore
|
| 2529 |
+
def _phasor_angles(x) -> np.complex_: # pragma: no cover
|
| 2530 |
+
return np.cos(x) + 1j * np.sin(x) # type: ignore
|
| 2531 |
+
|
| 2532 |
+
|
| 2533 |
+
_Real = Union[float, "np.integer[Any]", "np.floating[Any]"]
|
| 2534 |
+
|
| 2535 |
+
|
| 2536 |
+
@overload
|
| 2537 |
+
def phasor(angles: np.ndarray, *, mag: Optional[np.ndarray] = ...) -> np.ndarray:
|
| 2538 |
+
...
|
| 2539 |
+
|
| 2540 |
+
|
| 2541 |
+
@overload
|
| 2542 |
+
def phasor(angles: _Real, *, mag: Optional[_Number] = ...) -> np.complex_:
|
| 2543 |
+
...
|
| 2544 |
+
|
| 2545 |
+
|
| 2546 |
+
def phasor(
|
| 2547 |
+
angles: Union[np.ndarray, _Real],
|
| 2548 |
+
*,
|
| 2549 |
+
mag: Optional[Union[np.ndarray, _Number]] = None,
|
| 2550 |
+
) -> Union[np.ndarray, np.complex_]:
|
| 2551 |
+
"""Construct a complex phasor representation from angles.
|
| 2552 |
+
|
| 2553 |
+
When `mag` is not provided, this is equivalent to:
|
| 2554 |
+
|
| 2555 |
+
z = np.cos(angles) + 1j * np.sin(angles)
|
| 2556 |
+
|
| 2557 |
+
or by Euler's formula:
|
| 2558 |
+
|
| 2559 |
+
z = np.exp(1j * angles)
|
| 2560 |
+
|
| 2561 |
+
When `mag` is provided, this is equivalent to:
|
| 2562 |
+
|
| 2563 |
+
z = mag * np.exp(1j * angles)
|
| 2564 |
+
|
| 2565 |
+
This function should be more efficient (in time and memory) than the equivalent'
|
| 2566 |
+
formulations above, but produce numerically identical results.
|
| 2567 |
+
|
| 2568 |
+
Parameters
|
| 2569 |
+
----------
|
| 2570 |
+
angles : np.ndarray or scalar, real-valued
|
| 2571 |
+
Angle(s), measured in radians
|
| 2572 |
+
|
| 2573 |
+
mag : np.ndarray or scalar, optional
|
| 2574 |
+
If provided, phasor(s) will be scaled by `mag`.
|
| 2575 |
+
|
| 2576 |
+
If not provided (default), phasors will have unit magnitude.
|
| 2577 |
+
|
| 2578 |
+
`mag` must be of compatible shape to multiply with `angles`.
|
| 2579 |
+
|
| 2580 |
+
Returns
|
| 2581 |
+
-------
|
| 2582 |
+
z : np.ndarray or scalar, complex-valued
|
| 2583 |
+
Complex number(s) z corresponding to the given angle(s)
|
| 2584 |
+
and optional magnitude(s).
|
| 2585 |
+
|
| 2586 |
+
Examples
|
| 2587 |
+
--------
|
| 2588 |
+
Construct unit phasors at angles 0, pi/2, and pi:
|
| 2589 |
+
|
| 2590 |
+
>>> librosa.util.phasor([0, np.pi/2, np.pi])
|
| 2591 |
+
array([ 1.000e+00+0.000e+00j, 6.123e-17+1.000e+00j,
|
| 2592 |
+
-1.000e+00+1.225e-16j])
|
| 2593 |
+
|
| 2594 |
+
Construct a phasor with magnitude 1/2:
|
| 2595 |
+
|
| 2596 |
+
>>> librosa.util.phasor(np.pi/2, mag=0.5)
|
| 2597 |
+
(3.061616997868383e-17+0.5j)
|
| 2598 |
+
|
| 2599 |
+
Or arrays of angles and magnitudes:
|
| 2600 |
+
|
| 2601 |
+
>>> librosa.util.phasor(np.array([0, np.pi/2]), mag=np.array([0.5, 1.5]))
|
| 2602 |
+
array([5.000e-01+0.j , 9.185e-17+1.5j])
|
| 2603 |
+
"""
|
| 2604 |
+
z = _phasor_angles(angles)
|
| 2605 |
+
|
| 2606 |
+
if mag is not None:
|
| 2607 |
+
z *= mag
|
| 2608 |
+
|
| 2609 |
+
return z # type: ignore
|