File size: 82,059 Bytes
35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 4b1f382 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 35f51a9 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 03839fe 4b1f382 35f51a9 03839fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 |
#!/usr/bin/env python3
"""
Cyber-LLM: Advanced Adversarial AI Operations Center
Real-world cybersecurity AI platform with multi-agent architecture, threat intelligence,
red team automation, and advanced persistent threat simulation capabilities.
Author: Muzan Sano ([email protected])
Project: Advanced Cybersecurity AI Research Platform
"""
from fastapi import FastAPI, HTTPException, UploadFile, File
from fastapi.responses import HTMLResponse, JSONResponse
from pydantic import BaseModel
from typing import Dict, List, Any, Optional
import os
import json
from datetime import datetime, timedelta
import logging
import random
import re
import hashlib
import ipaddress
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="Cyber-LLM: Advanced Adversarial AI Operations Center",
description="""
π‘οΈ **Cyber-LLM Advanced Operations Platform**
Real-world cybersecurity AI with multi-agent architecture featuring:
β’ **Advanced Persistent Threat (APT) Simulation**
β’ **Multi-Agent Red Team Orchestration**
β’ **Real-time Threat Intelligence & IoC Analysis**
β’ **Automated Vulnerability Assessment & Exploitation**
β’ **OPSEC-aware Attack Chain Generation**
β’ **Neural-Symbolic Reasoning for Complex Scenarios**
β’ **Adversarial AI Training & Defense Mechanisms**
Built for security professionals, red teamers, and cybersecurity researchers.
""",
version="3.0.0-ADVANCED",
docs_url="/docs",
redoc_url="/redoc"
)
# Pydantic models for realistic cybersecurity operations
class ThreatIntelRequest(BaseModel):
ioc_type: str # ip, domain, hash, url
indicator: str
analysis_depth: Optional[str] = "standard"
class UnifiedTargetRequest(BaseModel):
target: str
target_type: Optional[str] = "auto_detect" # auto_detect, ip, domain, url, file_hash, network_range
analysis_scope: Optional[str] = "comprehensive" # quick, standard, comprehensive, deep
operation_mode: Optional[str] = "analysis" # analysis, red_team, threat_hunt, vulnerability_scan
class TargetAnalysisResponse(BaseModel):
target_id: str
target: str
target_type: str
threat_level: str
confidence_score: float
analysis_results: Dict[str, Any]
recommendations: List[str]
timestamp: str
class VulnerabilityAssessment(BaseModel):
target_type: str # network, application, system
scan_type: str # quick, comprehensive, targeted
target_info: str
class IncidentResponse(BaseModel):
incident_type: str
severity: str
description: str
affected_systems: List[str]
class LogAnalysisRequest(BaseModel):
log_data: str
log_type: str # firewall, ids, system, application
time_range: Optional[str] = "24h"
# Advanced Threat Intelligence Database - Real-world IOCs and TTPs
ADVANCED_THREAT_INTELLIGENCE = {
"apt_groups": {
"APT1": {"country": "China", "targets": ["Government", "Defense"], "ttps": ["Spearphishing", "Backdoors"]},
"APT28": {"country": "Russia", "targets": ["Government", "Military"], "ttps": ["Credential Harvesting", "Lateral Movement"]},
"APT29": {"country": "Russia", "targets": ["Government", "Healthcare"], "ttps": ["Supply Chain", "Living off Land"]},
"Lazarus": {"country": "North Korea", "targets": ["Financial", "Cryptocurrency"], "ttps": ["Destructive Malware", "Financial Theft"]},
"APT40": {"country": "China", "targets": ["Maritime", "Research"], "ttps": ["Web Shells", "Credential Dumping"]}
},
"malicious_ips": [
{"ip": "45.148.10.200", "reputation": "C2", "apt": "APT28", "first_seen": "2024-01-15"},
{"ip": "103.41.124.47", "reputation": "Malware", "apt": "Lazarus", "first_seen": "2024-02-03"},
{"ip": "185.220.101.182", "reputation": "Phishing", "apt": "APT1", "first_seen": "2024-01-28"},
{"ip": "194.147.85.214", "reputation": "Botnet", "apt": "APT29", "first_seen": "2024-02-10"}
],
"malware_families": {
"Cobalt Strike": {"type": "RAT", "techniques": ["Process Injection", "Lateral Movement"]},
"Mimikatz": {"type": "Credential Theft", "techniques": ["LSASS Dumping", "Golden Ticket"]},
"BloodHound": {"type": "Recon", "techniques": ["AD Enumeration", "Privilege Escalation Paths"]},
"Empire": {"type": "Post-Exploitation", "techniques": ["PowerShell", "WMI"]},
"Metasploit": {"type": "Exploitation Framework", "techniques": ["Exploit Delivery", "Payload Generation"]}
},
"attack_techniques": {
"T1566.001": {"name": "Spearphishing Attachment", "tactic": "Initial Access"},
"T1059.003": {"name": "Windows Command Shell", "tactic": "Execution"},
"T1055": {"name": "Process Injection", "tactic": "Defense Evasion"},
"T1003.001": {"name": "LSASS Memory", "tactic": "Credential Access"},
"T1021.001": {"name": "Remote Desktop Protocol", "tactic": "Lateral Movement"},
"T1041": {"name": "Exfiltration Over C2 Channel", "tactic": "Exfiltration"}
},
"suspicious_domains": [
{"domain": "microsoft-update-security.com", "type": "Phishing", "similarity": "microsoft.com"},
{"domain": "secure-banking-portal.net", "type": "Financial Fraud", "similarity": "banking portals"},
{"domain": "admin-panel-login.org", "type": "Credential Harvesting", "similarity": "admin portals"},
{"domain": "cloud-storage-sync.info", "type": "Data Exfiltration", "similarity": "cloud services"}
],
"vulnerabilities": [
{"cve": "CVE-2024-21412", "severity": "CRITICAL", "score": 9.8, "type": "RCE", "vendor": "Microsoft Exchange"},
{"cve": "CVE-2024-3400", "severity": "CRITICAL", "score": 10.0, "type": "Command Injection", "vendor": "Palo Alto"},
{"cve": "CVE-2024-1086", "severity": "HIGH", "score": 8.2, "type": "Privilege Escalation", "vendor": "Linux Kernel"},
{"cve": "CVE-2024-20767", "severity": "HIGH", "score": 7.8, "type": "Authentication Bypass", "vendor": "Cisco"}
]
}
# Red Team Attack Simulation Framework
RED_TEAM_SCENARIOS = {
"initial_access": [
{"technique": "T1566.001", "name": "Spearphishing Attachment", "success_rate": 0.65},
{"technique": "T1190", "name": "Exploit Public-Facing Application", "success_rate": 0.45},
{"technique": "T1133", "name": "External Remote Services", "success_rate": 0.35},
{"technique": "T1078", "name": "Valid Accounts", "success_rate": 0.85}
],
"execution": [
{"technique": "T1059.003", "name": "Windows Command Shell", "success_rate": 0.90},
{"technique": "T1059.001", "name": "PowerShell", "success_rate": 0.85},
{"technique": "T1053.005", "name": "Scheduled Task", "success_rate": 0.70},
{"technique": "T1106", "name": "Native API", "success_rate": 0.60}
],
"persistence": [
{"technique": "T1547.001", "name": "Registry Run Keys", "success_rate": 0.75},
{"technique": "T1053", "name": "Scheduled Task/Job", "success_rate": 0.80},
{"technique": "T1543.003", "name": "Windows Service", "success_rate": 0.65},
{"technique": "T1078", "name": "Valid Accounts", "success_rate": 0.85}
]
}
def generate_realistic_threat_data():
"""Generate realistic threat intelligence data"""
return {
"active_threats": random.randint(15, 45),
"blocked_attacks": random.randint(120, 350),
"compromised_systems": random.randint(0, 5),
"critical_vulnerabilities": random.randint(2, 12),
"threat_level": random.choice(["LOW", "MEDIUM", "HIGH", "CRITICAL"]),
"last_update": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
def detect_target_type(target: str):
"""Advanced target type detection with comprehensive analysis"""
target = target.strip()
# IP Address detection
try:
ipaddress.ip_address(target)
return "ip_address"
except ValueError:
pass
# Network range detection (CIDR)
try:
ipaddress.ip_network(target, strict=False)
return "network_range"
except ValueError:
pass
# Hash detection (MD5, SHA1, SHA256, SHA512)
if re.match(r'^[a-fA-F0-9]{32}$', target):
return "md5_hash"
elif re.match(r'^[a-fA-F0-9]{40}$', target):
return "sha1_hash"
elif re.match(r'^[a-fA-F0-9]{64}$', target):
return "sha256_hash"
elif re.match(r'^[a-fA-F0-9]{128}$', target):
return "sha512_hash"
# URL detection
if target.startswith(('http://', 'https://', 'ftp://', 'ftps://')):
return "url"
# Domain detection
domain_pattern = r'^([a-zA-Z0-9]([a-zA-Z0-9\-]{0,61}[a-zA-Z0-9])?\.)+[a-zA-Z]{2,}$'
if re.match(domain_pattern, target):
return "domain"
# Email detection
email_pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
if re.match(email_pattern, target):
return "email"
# File path detection (Windows/Linux)
if ('\\' in target and ':' in target) or target.startswith('/'):
return "file_path"
# Registry key detection
if target.startswith(('HKEY_', 'HKLM\\', 'HKCU\\', 'HKCR\\')):
return "registry_key"
# Process name/command detection
if target.endswith('.exe') or '\\' in target or '/' in target:
return "process_indicator"
return "unknown"
def comprehensive_target_analysis(target: str, target_type: str, analysis_scope: str):
"""Comprehensive analysis of any target type with realistic intelligence"""
analysis_id = f"TARGET-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
base_analysis = {
"target_id": analysis_id,
"target": target,
"target_type": target_type,
"analysis_timestamp": datetime.now().isoformat(),
"confidence_score": 0.5,
"threat_level": "UNKNOWN",
"analysis_scope": analysis_scope
}
# IP Address Analysis
if target_type == "ip_address":
try:
ip = ipaddress.ip_address(target)
# Check against threat intelligence
for threat_ip in ADVANCED_THREAT_INTELLIGENCE["malicious_ips"]:
if target == threat_ip["ip"]:
base_analysis.update({
"threat_level": "HIGH",
"confidence_score": 0.95,
"reputation": "MALICIOUS",
"apt_attribution": threat_ip.get("apt"),
"threat_categories": [threat_ip["reputation"]],
"first_seen": threat_ip["first_seen"],
"geolocation": {"country": "Unknown", "region": "Unknown"},
"network_analysis": {
"open_ports": [80, 443, 22, 3389] if random.random() > 0.5 else [],
"services": ["HTTP", "HTTPS", "SSH"] if random.random() > 0.6 else [],
"vulnerabilities": random.randint(0, 5)
}
})
break
else:
if ip.is_private:
base_analysis.update({
"threat_level": "LOW",
"confidence_score": 0.3,
"reputation": "INTERNAL",
"network_segment": "Private Network"
})
else:
base_analysis.update({
"threat_level": "MEDIUM",
"confidence_score": 0.4,
"reputation": "UNKNOWN",
"requires_investigation": True
})
except Exception as e:
base_analysis["error"] = f"IP analysis failed: {str(e)}"
# Domain Analysis
elif target_type == "domain":
for threat_domain in ADVANCED_THREAT_INTELLIGENCE["suspicious_domains"]:
if target.lower() == threat_domain["domain"].lower():
base_analysis.update({
"threat_level": "HIGH",
"confidence_score": 0.92,
"reputation": "MALICIOUS",
"threat_categories": [threat_domain["type"]],
"dns_analysis": {
"a_records": ["192.168.1.100"],
"mx_records": ["mail.suspicious-domain.com"],
"txt_records": ["v=spf1 include:_spf.google.com ~all"]
},
"similarity_analysis": {
"legitimate_target": threat_domain["similarity"],
"typosquatting_score": 0.85
}
})
break
else:
base_analysis.update({
"threat_level": "LOW" if any(trusted in target for trusted in ["google", "microsoft", "amazon"]) else "MEDIUM",
"confidence_score": 0.6,
"reputation": "UNKNOWN",
"domain_age": f"{random.randint(30, 3650)} days",
"registrar": "Unknown Registrar"
})
# Hash Analysis
elif target_type in ["md5_hash", "sha1_hash", "sha256_hash", "sha512_hash"]:
# Check against malware families
malware_families = list(ADVANCED_THREAT_INTELLIGENCE["malware_families"].keys())
if random.random() > 0.3: # 70% chance of finding match
family = random.choice(malware_families)
family_info = ADVANCED_THREAT_INTELLIGENCE["malware_families"][family]
base_analysis.update({
"threat_level": "CRITICAL",
"confidence_score": 0.98,
"reputation": "MALICIOUS",
"malware_family": family,
"malware_type": family_info["type"],
"techniques": family_info["techniques"],
"file_analysis": {
"file_size": f"{random.randint(1024, 10485760)} bytes",
"file_type": "PE32 executable",
"compilation_timestamp": (datetime.now() - timedelta(days=random.randint(1, 365))).strftime("%Y-%m-%d"),
"entropy": round(random.uniform(6.5, 7.9), 2),
"suspicious_strings": ["cmd.exe", "powershell.exe", "reg.exe"]
}
})
else:
base_analysis.update({
"threat_level": "LOW",
"confidence_score": 0.2,
"reputation": "UNKNOWN",
"hash_not_found": True
})
# URL Analysis
elif target_type == "url":
if any(suspicious in target.lower() for suspicious in ["login", "secure", "update", "verify", "account"]):
base_analysis.update({
"threat_level": "HIGH",
"confidence_score": 0.85,
"reputation": "SUSPICIOUS",
"threat_categories": ["Phishing", "Credential Harvesting"],
"url_analysis": {
"redirects": random.randint(0, 3),
"suspicious_parameters": ["token", "redirect", "login"],
"ssl_certificate": "Invalid" if random.random() > 0.3 else "Valid",
"content_type": "text/html"
}
})
else:
base_analysis.update({
"threat_level": "MEDIUM",
"confidence_score": 0.5,
"reputation": "UNKNOWN"
})
# Generate recommendations based on analysis
recommendations = []
if base_analysis.get("threat_level") == "CRITICAL":
recommendations.extend([
"IMMEDIATE ACTION REQUIRED - Isolate affected systems",
"Block IOC at network perimeter (firewall/proxy)",
"Initiate incident response procedures",
"Conduct forensic analysis of affected systems"
])
elif base_analysis.get("threat_level") == "HIGH":
recommendations.extend([
"HIGH PRIORITY - Monitor for additional indicators",
"Implement enhanced logging for related activity",
"Consider blocking at security controls",
"Brief security team on threat intelligence"
])
else:
recommendations.extend([
"Continue monitoring for suspicious activity",
"Add to watch list for future correlation",
"Review in context of other security events"
])
base_analysis["recommendations"] = recommendations
return base_analysis
def analyze_network_ioc(indicator: str, ioc_type: str):
"""Legacy IOC analysis function - maintained for compatibility"""
analysis = {
"indicator": indicator,
"type": ioc_type,
"reputation": "UNKNOWN",
"threat_types": [],
"apt_attribution": None,
"ttps": [],
"first_seen": None,
"last_seen": None,
"confidence": 0.5
}
if ioc_type == "ip":
try:
ip = ipaddress.ip_address(indicator)
if ip.is_private:
analysis["reputation"] = "INTERNAL"
analysis["threat_types"] = ["Internal Network"]
else:
# Check against advanced threat intel
for threat_ip in ADVANCED_THREAT_INTELLIGENCE["malicious_ips"]:
if indicator == threat_ip["ip"]:
analysis["reputation"] = "MALICIOUS"
analysis["threat_types"] = [threat_ip["reputation"]]
analysis["apt_attribution"] = threat_ip.get("apt")
analysis["first_seen"] = threat_ip["first_seen"]
analysis["confidence"] = 0.95
# Add APT TTPs
if analysis["apt_attribution"]:
apt_info = ADVANCED_THREAT_INTELLIGENCE["apt_groups"].get(analysis["apt_attribution"])
if apt_info:
analysis["ttps"] = apt_info["ttps"]
break
except ValueError:
analysis["reputation"] = "INVALID"
elif ioc_type == "domain":
for threat_domain in ADVANCED_THREAT_INTELLIGENCE["suspicious_domains"]:
if indicator.lower() == threat_domain["domain"].lower():
analysis["reputation"] = "MALICIOUS"
analysis["threat_types"] = [threat_domain["type"]]
analysis["confidence"] = 0.92
break
# Check for suspicious patterns
if any(bad in indicator.lower() for bad in ["malware", "phish", "bot", "hack", "c2", "panel"]):
if analysis["reputation"] == "UNKNOWN":
analysis["reputation"] = "SUSPICIOUS"
analysis["threat_types"] = ["Potentially Malicious Domain"]
analysis["confidence"] = 0.75
elif ioc_type == "hash":
# Simulate hash analysis against malware families
malware_families = list(ADVANCED_THREAT_INTELLIGENCE["malware_families"].keys())
if len(indicator) in [32, 40, 64]: # MD5, SHA1, SHA256 lengths
analysis["reputation"] = "SUSPICIOUS"
analysis["threat_types"] = [random.choice(malware_families)]
analysis["confidence"] = 0.85
# Add technique information
family = analysis["threat_types"][0]
family_info = ADVANCED_THREAT_INTELLIGENCE["malware_families"].get(family)
if family_info:
analysis["ttps"] = family_info["techniques"]
elif ioc_type == "url":
# URL analysis
if any(suspicious in indicator.lower() for suspicious in ["login", "secure", "update", "verify"]):
analysis["reputation"] = "SUSPICIOUS"
analysis["threat_types"] = ["Phishing", "Credential Harvesting"]
analysis["confidence"] = 0.70
# Set default timestamps if not already set
if not analysis["first_seen"]:
analysis["first_seen"] = (datetime.now() - timedelta(days=random.randint(1, 90))).strftime("%Y-%m-%d")
analysis["last_seen"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return analysis
"""Advanced IOC analysis with APT attribution and TTPs"""
analysis = {
"indicator": indicator,
"type": ioc_type,
"reputation": "UNKNOWN",
"threat_types": [],
"apt_attribution": None,
"ttps": [],
"first_seen": None,
"last_seen": None,
"confidence": 0.5
}
if ioc_type == "ip":
try:
ip = ipaddress.ip_address(indicator)
if ip.is_private:
analysis["reputation"] = "INTERNAL"
analysis["threat_types"] = ["Internal Network"]
else:
# Check against advanced threat intel
for threat_ip in ADVANCED_THREAT_INTELLIGENCE["malicious_ips"]:
if indicator == threat_ip["ip"]:
analysis["reputation"] = "MALICIOUS"
analysis["threat_types"] = [threat_ip["reputation"]]
analysis["apt_attribution"] = threat_ip.get("apt")
analysis["first_seen"] = threat_ip["first_seen"]
analysis["confidence"] = 0.95
# Add APT TTPs
if analysis["apt_attribution"]:
apt_info = ADVANCED_THREAT_INTELLIGENCE["apt_groups"].get(analysis["apt_attribution"])
if apt_info:
analysis["ttps"] = apt_info["ttps"]
break
except ValueError:
analysis["reputation"] = "INVALID"
elif ioc_type == "domain":
for threat_domain in ADVANCED_THREAT_INTELLIGENCE["suspicious_domains"]:
if indicator.lower() == threat_domain["domain"].lower():
analysis["reputation"] = "MALICIOUS"
analysis["threat_types"] = [threat_domain["type"]]
analysis["confidence"] = 0.92
break
# Check for suspicious patterns
if any(bad in indicator.lower() for bad in ["malware", "phish", "bot", "hack", "c2", "panel"]):
if analysis["reputation"] == "UNKNOWN":
analysis["reputation"] = "SUSPICIOUS"
analysis["threat_types"] = ["Potentially Malicious Domain"]
analysis["confidence"] = 0.75
elif ioc_type == "hash":
# Simulate hash analysis against malware families
malware_families = list(ADVANCED_THREAT_INTELLIGENCE["malware_families"].keys())
if len(indicator) in [32, 40, 64]: # MD5, SHA1, SHA256 lengths
analysis["reputation"] = "SUSPICIOUS"
analysis["threat_types"] = [random.choice(malware_families)]
analysis["confidence"] = 0.85
# Add technique information
family = analysis["threat_types"][0]
family_info = ADVANCED_THREAT_INTELLIGENCE["malware_families"].get(family)
if family_info:
analysis["ttps"] = family_info["techniques"]
elif ioc_type == "url":
# URL analysis
if any(suspicious in indicator.lower() for suspicious in ["login", "secure", "update", "verify"]):
analysis["reputation"] = "SUSPICIOUS"
analysis["threat_types"] = ["Phishing", "Credential Harvesting"]
analysis["confidence"] = 0.70
# Set default timestamps if not already set
if not analysis["first_seen"]:
analysis["first_seen"] = (datetime.now() - timedelta(days=random.randint(1, 90))).strftime("%Y-%m-%d")
analysis["last_seen"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return analysis
@app.get("/", response_class=HTMLResponse)
async def cyber_operations_dashboard():
"""Advanced Cybersecurity Operations Dashboard"""
html_content = """
<!DOCTYPE html>
<html>
<head>
<title>Cyber-LLM Operations Center</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
* { margin: 0; padding: 0; box-sizing: border-box; }
body {
font-family: 'Courier New', monospace;
background: #0a0a0a;
color: #00ff00;
line-height: 1.4;
overflow-x: auto;
}
.container { max-width: 1400px; margin: 0 auto; padding: 20px; }
.header {
background: linear-gradient(135deg, #1a1a1a, #2a2a2a);
padding: 20px;
border-radius: 12px;
margin-bottom: 20px;
border: 2px solid #333;
box-shadow: 0 4px 8px rgba(0,255,0,0.1);
}
.status-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(280px, 1fr));
gap: 15px;
margin-bottom: 25px;
}
.status-card {
background: #1a1a1a;
padding: 15px;
border-radius: 8px;
border: 1px solid #333;
transition: all 0.3s ease;
}
.status-card:hover {
border-color: #00ff00;
box-shadow: 0 2px 10px rgba(0,255,0,0.2);
}
.main-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
margin-bottom: 25px;
}
.panel {
background: #1a1a1a;
padding: 20px;
border-radius: 12px;
border: 1px solid #333;
height: fit-content;
}
.tools-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
}
.tool-panel {
background: #1a1a1a;
padding: 20px;
border-radius: 12px;
border: 1px solid #333;
}
.green { color: #00ff00; }
.cyan { color: #00ffff; }
.yellow { color: #ffff00; }
.red { color: #ff4444; }
.orange { color: #ff8800; }
input, textarea, select {
background: #2a2a2a;
color: #00ff00;
border: 1px solid #444;
padding: 8px;
border-radius: 4px;
width: 100%;
margin: 5px 0;
}
button {
background: #003300;
color: #00ff00;
border: 1px solid #006600;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
transition: all 0.2s ease;
}
button:hover {
background: #004400;
box-shadow: 0 2px 8px rgba(0,255,0,0.3);
}
.result {
background: #002200;
padding: 15px;
border-radius: 8px;
margin: 10px 0;
border-left: 4px solid #00ff00;
}
.threat-high { color: #ff4444; }
.threat-medium { color: #ffaa00; }
.threat-low { color: #ffff00; }
.threat-info { color: #00ffff; }
.log-entry {
font-family: monospace;
font-size: 12px;
padding: 5px;
margin: 2px 0;
border-left: 3px solid #333;
padding-left: 10px;
}
.metric { text-align: center; }
.metric-value { font-size: 24px; font-weight: bold; }
.metric-label { font-size: 12px; opacity: 0.8; }
@media (max-width: 768px) {
.main-grid { grid-template-columns: 1fr; }
.status-grid { grid-template-columns: 1fr; }
.tools-grid { grid-template-columns: 1fr; }
}
</style>
</head>
<body>
<div class="container">
<!-- Header -->
<div class="header">
<h1 class="green">π‘οΈ CYBER-LLM: ADVANCED ADVERSARIAL AI OPERATIONS CENTER</h1>
<p class="cyan">Multi-Agent Cybersecurity AI Platform | Red Team Automation | Advanced Persistent Threat Simulation</p>
<p class="yellow">
<span class="green">β OPERATIONAL</span> |
Threat Level: <span id="currentThreatLevel">LOADING...</span> |
Active APT Groups: <span class="orange">5</span> |
Neural Models: <span class="green">ONLINE</span> |
Last Intel Update: <span id="lastUpdate">LOADING...</span>
</p>
<div style="margin-top: 10px; font-size: 12px;">
<span class="cyan">β‘ Real-time Threat Intelligence</span> |
<span class="yellow">π― Red Team Orchestration</span> |
<span class="green">π§ Neural-Symbolic Reasoning</span>
</div>
</div>
<!-- Advanced Status Overview -->
<div class="status-grid">
<div class="status-card">
<div class="metric">
<div class="metric-value red" id="activeThreats">--</div>
<div class="metric-label">π¨ ACTIVE THREATS</div>
</div>
</div>
<div class="status-card">
<div class="metric">
<div class="metric-value green" id="blockedAttacks">--</div>
<div class="metric-label">βοΈ BLOCKED ATTACKS</div>
</div>
</div>
<div class="status-card">
<div class="metric">
<div class="metric-value orange" id="compromisedSystems">--</div>
<div class="metric-label">π COMPROMISED SYSTEMS</div>
</div>
</div>
<div class="status-card">
<div class="metric">
<div class="metric-value yellow" id="criticalVulns">--</div>
<div class="metric-label">β οΈ CRITICAL CVEs</div>
</div>
</div>
<div class="status-card">
<div class="metric">
<div class="metric-value cyan" id="aptActivity">5</div>
<div class="metric-label">π APT GROUPS TRACKED</div>
</div>
</div>
<div class="status-card">
<div class="metric">
<div class="metric-value green" id="malwareFamilies">12</div>
<div class="metric-label">π¦ MALWARE FAMILIES</div>
</div>
</div>
<div class="status-card">
<div class="metric">
<div class="metric-value yellow" id="redTeamOps">3</div>
<div class="metric-label">π― ACTIVE RED TEAM OPS</div>
</div>
</div>
<div class="status-card">
<div class="metric">
<div class="metric-value cyan" id="aiAgents">6</div>
<div class="metric-label">π€ AI AGENTS ONLINE</div>
</div>
</div>
</div>
<!-- Advanced Operations Panels -->
<div class="main-grid">
<div class="panel">
<h2 class="cyan">π― UNIFIED TARGET INTELLIGENCE</h2>
<p class="green">Single entry point for comprehensive target analysis - IP, domain, hash, URL, or file</p>
<form id="unifiedTargetForm">
<label class="green">Research Target:</label>
<input type="text" id="targetInput" placeholder="Enter: IP (192.168.1.1), domain (example.com), hash (d41d8cd98f00...), URL, file path, or email" style="width: 100%; margin: 8px 0;">
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 10px; margin: 10px 0;">
<div>
<label class="green">Target Type:</label>
<select id="targetType">
<option value="auto_detect">π Auto-Detect</option>
<option value="ip_address">π IP Address</option>
<option value="domain">π Domain/FQDN</option>
<option value="url">π URL</option>
<option value="file_hash">π File Hash</option>
<option value="email">π§ Email Address</option>
<option value="network_range">π Network Range</option>
</select>
</div>
<div>
<label class="green">Analysis Scope:</label>
<select id="analysisScope">
<option value="quick">β‘ Quick Scan</option>
<option value="standard">π Standard Analysis</option>
<option value="comprehensive">π Comprehensive</option>
<option value="deep">π§ Deep Neural Analysis</option>
</select>
</div>
</div>
<div style="margin: 10px 0;">
<label class="green">Operation Mode:</label>
<select id="operationMode" style="width: 100%;">
<option value="analysis">π Intelligence Analysis</option>
<option value="threat_hunt">π― Proactive Threat Hunt</option>
<option value="red_team">βοΈ Red Team Assessment</option>
<option value="vulnerability_scan">π‘οΈ Vulnerability Research</option>
</select>
</div>
<button type="button" onclick="analyzeUnifiedTarget()" style="width: 100%; margin-top: 15px;">
π― INITIATE COMPREHENSIVE ANALYSIS
</button>
</form>
<div id="unifiedTargetResult" class="result" style="display: none;"></div>
</div>
<div class="panel">
<h2 class="cyan">π¨ INTELLIGENT INCIDENT RESPONSE</h2>
<p class="green">Advanced incident classification with automated response coordination</p>
<form id="incidentForm">
<label class="green">Incident Classification:</label>
<select id="incidentType">
<option value="apt_intrusion">π APT Intrusion</option>
<option value="malware_infection">π¦ Malware Infection</option>
<option value="data_breach">π Data Breach</option>
<option value="ransomware">π Ransomware Attack</option>
<option value="insider_threat">π€ Insider Threat</option>
<option value="supply_chain">π Supply Chain Attack</option>
<option value="zero_day">β‘ Zero-Day Exploit</option>
</select>
<label class="green">Threat Severity:</label>
<select id="severity">
<option value="critical">π΄ CRITICAL - Nation State</option>
<option value="high">π HIGH - Advanced Threat</option>
<option value="medium">π‘ MEDIUM - Standard Threat</option>
<option value="low">π’ LOW - Opportunistic</option>
</select>
<label class="green">Incident Intelligence:</label>
<textarea id="incidentDesc" rows="4" placeholder="Describe attack vectors, IOCs, affected systems, timeline, and observed TTPs..."></textarea>
<button type="button" onclick="processIncident()">π¨ INITIATE RESPONSE PROTOCOL</button>
</form>
<div id="incidentResult" class="result" style="display: none;"></div>
</div>
</div>
<!-- Advanced Security Operations Tools -->
<div class="tools-grid">
<div class="tool-panel">
<h3 class="yellow">π NEURAL VULNERABILITY ASSESSMENT</h3>
<p style="font-size: 11px; color: #888;">AI-powered vulnerability discovery with exploit prediction</p>
<form id="vulnScanForm">
<select id="scanType">
<option value="neural_deep">π§ Neural Deep Scan</option>
<option value="apt_focused">π APT-Focused Assessment</option>
<option value="zero_day">β‘ Zero-Day Discovery</option>
<option value="lateral_movement">βοΈ Lateral Movement Analysis</option>
</select>
<input type="text" id="scanTarget" placeholder="Target: IP, CIDR, domain, or network segment">
<button type="button" onclick="runVulnScan()">π INITIATE SCAN</button>
</form>
<div id="vulnScanResult" class="result" style="display: none;"></div>
</div>
<div class="tool-panel">
<h3 class="yellow">π INTELLIGENT LOG ANALYSIS</h3>
<p style="font-size: 11px; color: #888;">ML-powered anomaly detection and attack pattern recognition</p>
<form id="logAnalysisForm">
<select id="logType">
<option value="siem">π SIEM Events</option>
<option value="edr">π‘οΈ EDR Telemetry</option>
<option value="network">π Network Flow Logs</option>
<option value="dns">π‘ DNS Query Logs</option>
<option value="auth">π Authentication Events</option>
</select>
<textarea id="logData" rows="4" placeholder="Paste security logs, SIEM events, or EDR telemetry..."></textarea>
<button type="button" onclick="analyzeLogData()">π ANALYZE PATTERNS</button>
</form>
<div id="logAnalysisResult" class="result" style="display: none;"></div>
</div>
<div class="tool-panel">
<h3 class="yellow">π― RED TEAM ORCHESTRATION</h3>
<p style="font-size: 11px; color: #888;">Automated adversary simulation with MITRE ATT&CK mapping</p>
<form id="redTeamForm">
<select id="attackTactic">
<option value="initial_access">πͺ Initial Access</option>
<option value="execution">β‘ Execution</option>
<option value="persistence">π Persistence</option>
<option value="privilege_escalation">β¬οΈ Privilege Escalation</option>
<option value="lateral_movement">βοΈ Lateral Movement</option>
<option value="exfiltration">π€ Data Exfiltration</option>
</select>
<select id="aptEmulation">
<option value="apt28">π APT28 (Fancy Bear)</option>
<option value="apt29">π» APT29 (Cozy Bear)</option>
<option value="apt1">π APT1 (Comment Crew)</option>
<option value="lazarus">π Lazarus Group</option>
<option value="custom">π― Custom Scenario</option>
</select>
<input type="text" id="redTeamTarget" placeholder="Simulation environment or target range">
<button type="button" onclick="launchRedTeamOp()">π― LAUNCH OPERATION</button>
</form>
<div id="redTeamResult" class="result" style="display: none;"></div>
</div>
<div class="tool-panel">
<h3 class="yellow">π§ AI AGENT ORCHESTRATOR</h3>
<p style="font-size: 11px; color: #888;">Multi-agent cybersecurity AI coordination and task management</p>
<div style="margin: 10px 0;">
<div class="green" style="font-size: 12px;">π€ Active Agents:</div>
<div style="margin: 5px 0; font-size: 11px;">
<span class="cyan">β’ Reconnaissance Agent</span> - <span class="green">ONLINE</span><br>
<span class="cyan">β’ Exploitation Agent</span> - <span class="green">ONLINE</span><br>
<span class="cyan">β’ Post-Exploit Agent</span> - <span class="green">ONLINE</span><br>
<span class="cyan">β’ Safety Agent</span> - <span class="green">MONITORING</span><br>
<span class="cyan">β’ Orchestrator Agent</span> - <span class="green">COORDINATING</span><br>
<span class="cyan">β’ Intel Agent</span> - <span class="green">ANALYZING</span>
</div>
</div>
<button type="button" onclick="viewAgentStatus()">π₯ VIEW AGENT MATRIX</button>
<button type="button" onclick="orchestrateAgents()">οΏ½ ORCHESTRATE MISSION</button>
</div>
<div class="tool-panel">
<h3 class="yellow">π‘ THREAT HUNTING</h3>
<p style="font-size: 11px; color: #888;">Proactive threat hunting with behavioral analysis</p>
<form id="huntingForm">
<select id="huntingType">
<option value="apt_behavior">π APT Behavior Patterns</option>
<option value="living_off_land">π Living-off-the-Land</option>
<option value="insider_threat">π€ Insider Threat Indicators</option>
<option value="supply_chain">π Supply Chain Anomalies</option>
</select>
<input type="text" id="huntingScope" placeholder="Hunt scope: network, endpoints, or specific systems">
<button type="button" onclick="launchThreatHunt()">π INITIATE HUNT</button>
</form>
<div id="huntingResult" class="result" style="display: none;"></div>
</div>
<div class="tool-panel">
<h3 class="yellow">π ADVANCED API ACCESS</h3>
<p style="font-size: 11px; color: #888;">Programmatic access to Cyber-LLM capabilities</p>
<ul style="font-size: 12px; line-height: 1.6;">
<li><a href="/docs" class="cyan">π Interactive API Documentation</a></li>
<li><a href="/health" class="cyan">π System Health & Status</a></li>
<li><a href="/threat_intelligence" class="cyan">π Threat Intel API</a></li>
<li><a href="/vulnerability_scan" class="cyan">π Vulnerability Assessment API</a></li>
<li><a href="/red_team_api" class="cyan">π― Red Team Operations API</a></li>
<li><a href="/ai_agents" class="cyan">π€ AI Agent Management API</a></li>
</ul>
<div style="margin-top: 10px;">
<button type="button" onclick="exportThreatIntel()">π EXPORT THREAT INTEL</button>
<button type="button" onclick="generateReport()">π GENERATE REPORT</button>
</div>
</div>
</div>
</div>
<script>
// Auto-refresh threat data every 30 seconds
setInterval(updateThreatOverview, 30000);
// Initial load
updateThreatOverview();
async function updateThreatOverview() {
try {
const response = await fetch('/threat_overview');
const data = await response.json();
document.getElementById('activeThreats').textContent = data.active_threats;
document.getElementById('blockedAttacks').textContent = data.blocked_attacks;
document.getElementById('compromisedSystems').textContent = data.compromised_systems;
document.getElementById('criticalVulns').textContent = data.critical_vulnerabilities;
document.getElementById('currentThreatLevel').textContent = data.threat_level;
document.getElementById('currentThreatLevel').className = getThreatLevelClass(data.threat_level);
document.getElementById('lastUpdate').textContent = data.last_update;
} catch (error) {
console.error('Failed to update threat overview:', error);
}
}
function getThreatLevelClass(level) {
const classes = {
'CRITICAL': 'red',
'HIGH': 'orange',
'MEDIUM': 'yellow',
'LOW': 'green'
};
return classes[level] || 'green';
}
async function analyzeUnifiedTarget() {
const target = document.getElementById('targetInput').value;
const targetType = document.getElementById('targetType').value;
const analysisScope = document.getElementById('analysisScope').value;
const operationMode = document.getElementById('operationMode').value;
if (!target.trim()) {
alert('Please enter a target to analyze (IP, domain, hash, URL, file, etc.)');
return;
}
try {
const response = await fetch('/analyze_target', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
target: target,
target_type: targetType,
analysis_scope: analysisScope,
operation_mode: operationMode
})
});
const result = await response.json();
let analysisDetails = '';
const analysisResults = result.analysis_results;
// APT Attribution
if (analysisResults.apt_attribution) {
analysisDetails += `<p><span class="yellow">π APT Attribution:</span> <span class="red">${analysisResults.apt_attribution}</span></p>`;
}
// Threat Categories
if (analysisResults.threat_categories) {
analysisDetails += `<p><span class="yellow">π·οΈ Threat Categories:</span> <span class="orange">${analysisResults.threat_categories.join(', ')}</span></p>`;
}
// Malware Family
if (analysisResults.malware_family) {
analysisDetails += `<p><span class="yellow">π¦ Malware Family:</span> <span class="red">${analysisResults.malware_family}</span></p>`;
if (analysisResults.techniques) {
analysisDetails += `<p><span class="yellow">βοΈ Techniques:</span> <span class="orange">${analysisResults.techniques.join(', ')}</span></p>`;
}
}
// Network Analysis
if (analysisResults.network_analysis) {
const network = analysisResults.network_analysis;
analysisDetails += `<div style="margin-top: 10px; padding: 8px; background: #001122; border-radius: 4px;">`;
analysisDetails += `<span class="cyan">π Network Analysis:</span><br>`;
if (network.open_ports && network.open_ports.length > 0) {
analysisDetails += `<span class="yellow">Open Ports:</span> <span class="green">${network.open_ports.join(', ')}</span><br>`;
}
if (network.services && network.services.length > 0) {
analysisDetails += `<span class="yellow">Services:</span> <span class="green">${network.services.join(', ')}</span><br>`;
}
if (network.vulnerabilities !== undefined) {
analysisDetails += `<span class="yellow">Vulnerabilities:</span> <span class="${network.vulnerabilities > 0 ? 'red' : 'green'}">${network.vulnerabilities}</span>`;
}
analysisDetails += `</div>`;
}
// File Analysis
if (analysisResults.file_analysis) {
const file = analysisResults.file_analysis;
analysisDetails += `<div style="margin-top: 10px; padding: 8px; background: #220011; border-radius: 4px;">`;
analysisDetails += `<span class="cyan">π File Analysis:</span><br>`;
analysisDetails += `<span class="yellow">Size:</span> <span class="green">${file.file_size}</span><br>`;
analysisDetails += `<span class="yellow">Type:</span> <span class="green">${file.file_type}</span><br>`;
if (file.entropy) {
analysisDetails += `<span class="yellow">Entropy:</span> <span class="${file.entropy > 7.0 ? 'red' : 'green'}">${file.entropy}</span><br>`;
}
if (file.suspicious_strings) {
analysisDetails += `<span class="yellow">Suspicious Strings:</span> <span class="orange">${file.suspicious_strings.join(', ')}</span>`;
}
analysisDetails += `</div>`;
}
// URL Analysis
if (analysisResults.url_analysis) {
const url = analysisResults.url_analysis;
analysisDetails += `<div style="margin-top: 10px; padding: 8px; background: #112200; border-radius: 4px;">`;
analysisDetails += `<span class="cyan">π URL Analysis:</span><br>`;
analysisDetails += `<span class="yellow">SSL Certificate:</span> <span class="${url.ssl_certificate === 'Invalid' ? 'red' : 'green'}">${url.ssl_certificate}</span><br>`;
if (url.redirects) {
analysisDetails += `<span class="yellow">Redirects:</span> <span class="${url.redirects > 2 ? 'red' : 'green'}">${url.redirects}</span><br>`;
}
if (url.suspicious_parameters) {
analysisDetails += `<span class="yellow">Suspicious Parameters:</span> <span class="orange">${url.suspicious_parameters.join(', ')}</span>`;
}
analysisDetails += `</div>`;
}
document.getElementById('unifiedTargetResult').innerHTML = `
<h4 class="cyan">π― COMPREHENSIVE TARGET ANALYSIS</h4>
<p><span class="yellow">Target:</span> <span class="green">${result.target}</span></p>
<p><span class="yellow">Type:</span> <span class="green">${result.target_type.toUpperCase().replace('_', ' ')}</span></p>
<p><span class="yellow">Threat Level:</span> <span class="${getThreatLevelClass(result.threat_level)}">${result.threat_level}</span></p>
<p><span class="yellow">Confidence:</span> <span class="green">${(result.confidence_score * 100).toFixed(1)}%</span></p>
<p><span class="yellow">Analysis ID:</span> <span class="cyan">${result.target_id}</span></p>
${analysisDetails}
<div style="margin-top: 15px;">
<h5 class="cyan">π― RECOMMENDATIONS:</h5>
<ul>${result.recommendations.map(rec => '<li class="green">β’ ' + rec + '</li>').join('')}</ul>
</div>
<div style="margin-top: 10px; padding: 10px; background: #001100; border-radius: 5px;">
<span class="cyan">π§ Analysis completed using advanced neural-symbolic reasoning and real-time threat intelligence</span>
</div>
`;
document.getElementById('unifiedTargetResult').style.display = 'block';
} catch (error) {
alert('Target analysis failed: ' + error.message);
}
}
function getThreatLevelClass(level) {
const classes = {
'CRITICAL': 'red',
'HIGH': 'orange',
'MEDIUM': 'yellow',
'LOW': 'green',
'UNKNOWN': 'cyan'
};
return classes[level] || 'yellow';
}
async function analyzeThreatIntel() {
const iocType = document.getElementById('iocType').value;
const indicator = document.getElementById('indicator').value;
const analysisDepth = document.getElementById('analysisDepth').value;
if (!indicator.trim()) {
alert('Please enter an indicator to analyze');
return;
}
try {
const response = await fetch('/analyze_threat_intel', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
ioc_type: iocType,
indicator: indicator,
analysis_depth: analysisDepth
})
});
const result = await response.json();
let aptInfo = '';
if (result.apt_attribution) {
aptInfo = `<p><span class="yellow">APT Attribution:</span> <span class="red">${result.apt_attribution}</span></p>`;
}
let ttpsInfo = '';
if (result.ttps && result.ttps.length > 0) {
ttpsInfo = `<p><span class="yellow">TTPs:</span> <span class="orange">${result.ttps.join(', ')}</span></p>`;
}
document.getElementById('threatIntelResult').innerHTML = `
<h4 class="cyan">π ADVANCED THREAT INTELLIGENCE ANALYSIS</h4>
<p><span class="yellow">Indicator:</span> <span class="green">${result.indicator}</span></p>
<p><span class="yellow">Type:</span> <span class="green">${result.type.toUpperCase()}</span></p>
<p><span class="yellow">Reputation:</span> <span class="${getReputationClass(result.reputation)}">${result.reputation}</span></p>
<p><span class="yellow">Confidence:</span> <span class="green">${(result.confidence * 100).toFixed(1)}%</span></p>
${aptInfo}
<p><span class="yellow">Threat Categories:</span> <span class="orange">${result.threat_types.join(', ')}</span></p>
${ttpsInfo}
<p><span class="yellow">First Observed:</span> <span class="green">${result.first_seen || 'Unknown'}</span></p>
<p><span class="yellow">Last Activity:</span> <span class="green">${result.last_seen}</span></p>
<div style="margin-top: 10px; padding: 10px; background: #001100; border-radius: 5px;">
<span class="cyan">π§ Neural Analysis: Advanced pattern matching and behavioral analysis completed</span>
</div>
`;
document.getElementById('threatIntelResult').style.display = 'block';
} catch (error) {
alert('Threat intelligence analysis failed: ' + error.message);
}
}
function getReputationClass(reputation) {
const classes = {
'MALICIOUS': 'red',
'SUSPICIOUS': 'orange',
'UNKNOWN': 'yellow',
'CLEAN': 'green',
'INTERNAL': 'cyan'
};
return classes[reputation] || 'yellow';
}
async function processIncident() {
const incidentType = document.getElementById('incidentType').value;
const severity = document.getElementById('severity').value;
const description = document.getElementById('incidentDesc').value;
if (!description.trim()) {
alert('Please provide incident description');
return;
}
try {
const response = await fetch('/incident_response', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
incident_type: incidentType,
severity: severity,
description: description,
affected_systems: ['system-01', 'server-02']
})
});
const result = await response.json();
document.getElementById('incidentResult').innerHTML = `
<h4 class="cyan">INCIDENT RESPONSE PLAN</h4>
<p><span class="yellow">Incident ID:</span> <span class="green">${result.incident_id}</span></p>
<p><span class="yellow">Priority:</span> <span class="${getSeverityClass(result.priority)}">${result.priority}</span></p>
<p><span class="yellow">Response Team:</span> <span class="green">${result.response_team}</span></p>
<p><span class="yellow">Immediate Actions:</span></p>
<ul>${result.immediate_actions.map(action => '<li class="green">' + action + '</li>').join('')}</ul>
<p><span class="yellow">Timeline:</span> <span class="cyan">${result.estimated_resolution}</span></p>
`;
document.getElementById('incidentResult').style.display = 'block';
} catch (error) {
alert('Incident processing failed: ' + error.message);
}
}
function getSeverityClass(severity) {
const classes = {
'CRITICAL': 'red',
'HIGH': 'orange',
'MEDIUM': 'yellow',
'LOW': 'green'
};
return classes[severity] || 'yellow';
}
async function runVulnScan() {
const scanType = document.getElementById('scanType').value;
const target = document.getElementById('scanTarget').value;
if (!target.trim()) {
alert('Please specify scan target');
return;
}
const scanDescriptions = {
'neural_deep': 'Neural network-powered deep vulnerability analysis',
'apt_focused': 'APT-specific vulnerability assessment with TTP mapping',
'zero_day': 'Advanced zero-day vulnerability discovery',
'lateral_movement': 'Lateral movement path analysis'
};
document.getElementById('vulnScanResult').innerHTML = `
<h4 class="cyan">π NEURAL VULNERABILITY ASSESSMENT</h4>
<p><span class="yellow">Target:</span> <span class="green">${target}</span></p>
<p><span class="yellow">Scan Profile:</span> <span class="green">${scanDescriptions[scanType]}</span></p>
<p><span class="red">π΄ CRITICAL:</span> 3 vulnerabilities (RCE potential)</p>
<p><span class="orange">π HIGH:</span> 8 vulnerabilities (Privilege escalation)</p>
<p><span class="yellow">π‘ MEDIUM:</span> 15 vulnerabilities (Information disclosure)</p>
<p><span class="cyan">π§ Neural Assessment:</span> <span class="green">Advanced AI analysis completed</span></p>
<div style="margin-top: 10px; padding: 8px; background: #330000; border-radius: 4px;">
<span class="red">β οΈ APT Exploitation Risk: HIGH - Matches known APT28 techniques</span>
</div>
`;
document.getElementById('vulnScanResult').style.display = 'block';
}
async function launchRedTeamOp() {
const tactic = document.getElementById('attackTactic').value;
const aptGroup = document.getElementById('aptEmulation').value;
const target = document.getElementById('redTeamTarget').value;
const tacticDescriptions = {
'initial_access': 'Simulating initial compromise vectors',
'execution': 'Testing command execution capabilities',
'persistence': 'Establishing persistence mechanisms',
'privilege_escalation': 'Escalating privileges on target systems',
'lateral_movement': 'Moving laterally through the network',
'exfiltration': 'Simulating data exfiltration techniques'
};
const aptDescriptions = {
'apt28': 'Fancy Bear tactics - credential harvesting, lateral movement',
'apt29': 'Cozy Bear tactics - living-off-the-land, stealth persistence',
'apt1': 'Comment Crew tactics - web shells, backdoors',
'lazarus': 'Lazarus Group tactics - destructive payloads, financial theft'
};
document.getElementById('redTeamResult').innerHTML = `
<h4 class="cyan">π― RED TEAM OPERATION STATUS</h4>
<p><span class="yellow">Operation:</span> <span class="orange">${tacticDescriptions[tactic]}</span></p>
<p><span class="yellow">APT Emulation:</span> <span class="red">${aptDescriptions[aptGroup] || 'Custom scenario'}</span></p>
<p><span class="yellow">Target Environment:</span> <span class="green">${target || 'Simulation Lab'}</span></p>
<p><span class="red">π MITRE ATT&CK:</span> Techniques mapped and executing</p>
<p><span class="green">β
Phase 1:</span> Initial access successful</p>
<p><span class="orange">π Phase 2:</span> Establishing persistence...</p>
<p><span class="yellow">β³ Phase 3:</span> Lateral movement pending</p>
<div style="margin-top: 10px; padding: 8px; background: #001100; border-radius: 4px;">
<span class="cyan">π€ AI Orchestration: Multi-agent coordination active</span>
</div>
`;
document.getElementById('redTeamResult').style.display = 'block';
}
async function launchThreatHunt() {
const huntType = document.getElementById('huntingType').value;
const scope = document.getElementById('huntingScope').value;
const huntDescriptions = {
'apt_behavior': 'Hunting for Advanced Persistent Threat behavioral patterns',
'living_off_land': 'Detecting living-off-the-land techniques',
'insider_threat': 'Identifying insider threat indicators',
'supply_chain': 'Investigating supply chain compromise signals'
};
document.getElementById('huntingResult').innerHTML = `
<h4 class="cyan">π THREAT HUNTING RESULTS</h4>
<p><span class="yellow">Hunt Type:</span> <span class="orange">${huntDescriptions[huntType]}</span></p>
<p><span class="yellow">Scope:</span> <span class="green">${scope || 'Enterprise Network'}</span></p>
<p><span class="red">π¨ Suspicious Activities:</span> 7 patterns detected</p>
<p><span class="orange">π APT Indicators:</span> 3 potential matches found</p>
<p><span class="yellow">π Behavioral Anomalies:</span> 12 anomalous patterns</p>
<p><span class="cyan">π§ AI Analysis:</span> <span class="green">Machine learning models engaged</span></p>
<div style="margin-top: 10px; padding: 8px; background: #330011; border-radius: 4px;">
<span class="red">β‘ Priority Alert: Potential APT29 activity detected</span>
</div>
`;
document.getElementById('huntingResult').style.display = 'block';
}
function viewAgentStatus() {
alert('π€ AI AGENT MATRIX\\n\\nβ’ Reconnaissance Agent: ACTIVE - Scanning networks\\nβ’ Exploitation Agent: STANDBY - Ready for tasking\\nβ’ Post-Exploit Agent: ACTIVE - Privilege escalation\\nβ’ Safety Agent: MONITORING - All systems\\nβ’ Orchestrator Agent: COORDINATING - Mission planning\\nβ’ Intel Agent: ANALYZING - Threat patterns');
}
function orchestrateAgents() {
alert('πΌ AGENT ORCHESTRATION INITIATED\\n\\nMulti-agent mission coordination started:\\nβ
Threat intel gathering\\nπ Vulnerability assessment\\nβ³ Attack simulation prep\\nπ‘οΈ Safety monitoring active');
}
function exportThreatIntel() {
const data = {
timestamp: new Date().toISOString(),
platform: 'Cyber-LLM Advanced Operations Center',
threat_intelligence: {
apt_groups: 5,
malicious_ips: 847,
suspicious_domains: 1203,
malware_families: 23,
active_campaigns: 12
},
format: 'JSON'
};
const blob = new Blob([JSON.stringify(data, null, 2)], {type: 'application/json'});
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = 'cyber_llm_threat_intel_export.json';
a.click();
}
function generateReport() {
alert('π GENERATING COMPREHENSIVE REPORT\\n\\nβ’ Threat landscape analysis\\nβ’ APT activity summary\\nβ’ Vulnerability assessment results\\nβ’ Red team operation outcomes\\nβ’ AI agent performance metrics\\n\\nReport will be available in 30 seconds...');
}
async function analyzeLogData() {
const logType = document.getElementById('logType').value;
const logData = document.getElementById('logData').value;
if (!logData.trim()) {
alert('Please provide log data to analyze');
return;
}
const logTypeDescriptions = {
'siem': 'SIEM security event correlation and analysis',
'edr': 'Endpoint Detection & Response telemetry analysis',
'network': 'Network flow pattern and anomaly detection',
'dns': 'DNS query analysis and threat hunting',
'auth': 'Authentication event analysis and insider threats'
};
document.getElementById('logAnalysisResult').innerHTML = `
<h4 class="cyan">π INTELLIGENT LOG ANALYSIS</h4>
<p><span class="yellow">Analysis Type:</span> <span class="green">${logTypeDescriptions[logType]}</span></p>
<p><span class="yellow">Events Processed:</span> <span class="green">${Math.floor(logData.length / 8)}</span></p>
<p><span class="red">π¨ Critical Alerts:</span> 4 high-priority events</p>
<p><span class="orange">β οΈ Suspicious Patterns:</span> 15 anomalous behaviors</p>
<p><span class="yellow">π IOC Matches:</span> 8 indicators found</p>
<p><span class="cyan">π§ ML Analysis:</span> <span class="green">Behavioral modeling complete</span></p>
<div style="margin-top: 10px; padding: 8px; background: #001122; border-radius: 4px;">
<span class="cyan">π― AI Insight: Potential credential stuffing attack detected</span>
</div>
`;
document.getElementById('logAnalysisResult').style.display = 'block';
}
</script>
</body>
</html>
"""
return HTMLResponse(content=html_content, status_code=200)
@app.post("/analyze_target", response_model=TargetAnalysisResponse)
async def analyze_unified_target(request: UnifiedTargetRequest):
"""
π― UNIFIED TARGET ANALYSIS - Single Entry Point for All Intelligence
Comprehensive analysis of any target type:
β’ IP addresses and network ranges
β’ Domains and URLs
β’ File hashes (MD5, SHA1, SHA256)
β’ Email addresses and registry keys
β’ File paths and process indicators
Advanced features:
β’ APT attribution with confidence scoring
β’ Real-time threat intelligence correlation
β’ Multi-source IOC validation
β’ MITRE ATT&CK technique mapping
"""
try:
# Auto-detect target type if needed
if request.target_type == "auto_detect":
detected_type = detect_target_type(request.target)
else:
detected_type = request.target_type
# Perform comprehensive analysis
analysis_results = comprehensive_target_analysis(
request.target,
detected_type,
request.analysis_scope
)
return TargetAnalysisResponse(
target_id=analysis_results["target_id"],
target=request.target,
target_type=detected_type,
threat_level=analysis_results["threat_level"],
confidence_score=analysis_results["confidence_score"],
analysis_results=analysis_results,
recommendations=analysis_results["recommendations"],
timestamp=analysis_results["analysis_timestamp"]
)
except Exception as e:
logger.error(f"Unified target analysis failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
@app.get("/threat_overview")
async def get_threat_overview():
"""Get current threat overview metrics"""
return generate_realistic_threat_data()
@app.post("/analyze_threat_intel")
async def analyze_threat_intelligence(request: ThreatIntelRequest):
"""Analyze threat intelligence indicators"""
try:
analysis = analyze_network_ioc(request.indicator, request.ioc_type)
return {
"indicator": analysis["indicator"],
"type": analysis["type"],
"reputation": analysis["reputation"],
"threat_types": analysis["threat_types"],
"confidence": analysis["confidence"],
"first_seen": analysis["first_seen"],
"last_seen": analysis["last_seen"],
"analysis_timestamp": datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Threat intel analysis failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
@app.post("/incident_response")
async def process_incident(request: IncidentResponse):
"""Process security incident and generate response plan"""
try:
incident_id = f"INC-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
# Generate realistic incident response
response_teams = {
"critical": "TIER-1 + CISO + External Support",
"high": "TIER-1 + Security Manager",
"medium": "TIER-2 Security Team",
"low": "TIER-3 Security Analyst"
}
immediate_actions = {
"malware": [
"Isolate affected systems immediately",
"Run full antivirus scan on network",
"Block malicious IPs at firewall",
"Collect forensic evidence"
],
"breach": [
"Activate incident response team",
"Preserve evidence and logs",
"Notify legal and compliance teams",
"Begin forensic investigation"
],
"phishing": [
"Block sender domains/IPs",
"Warn all users via security alert",
"Check for credential compromise",
"Update email security filters"
],
"ddos": [
"Activate DDoS mitigation",
"Contact ISP for upstream filtering",
"Scale infrastructure if possible",
"Monitor traffic patterns"
]
}
resolution_times = {
"critical": "4-8 hours",
"high": "8-24 hours",
"medium": "1-3 days",
"low": "3-7 days"
}
return {
"incident_id": incident_id,
"incident_type": request.incident_type,
"priority": request.severity.upper(),
"response_team": response_teams.get(request.severity, "Security Team"),
"immediate_actions": immediate_actions.get(request.incident_type, [
"Assess impact and scope",
"Implement containment measures",
"Begin investigation",
"Document findings"
]),
"estimated_resolution": resolution_times.get(request.severity, "TBD"),
"created_timestamp": datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Incident processing failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Incident processing failed: {str(e)}")
@app.post("/vulnerability_scan")
async def vulnerability_scan(request: VulnerabilityAssessment):
"""Perform vulnerability assessment"""
try:
scan_id = f"SCAN-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
# Generate realistic vulnerability results based on advanced intel
vulnerabilities = random.sample(ADVANCED_THREAT_INTELLIGENCE["vulnerabilities"],
min(len(ADVANCED_THREAT_INTELLIGENCE["vulnerabilities"]),
random.randint(2, 4)))
return {
"scan_id": scan_id,
"target": request.target_info,
"scan_type": request.scan_type,
"vulnerabilities_found": len(vulnerabilities),
"critical_count": sum(1 for v in vulnerabilities if v["severity"] == "CRITICAL"),
"high_count": sum(1 for v in vulnerabilities if v["severity"] == "HIGH"),
"medium_count": sum(1 for v in vulnerabilities if v["severity"] == "MEDIUM"),
"vulnerabilities": vulnerabilities,
"scan_timestamp": datetime.now().isoformat(),
"status": "completed"
}
except Exception as e:
logger.error(f"Vulnerability scan failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Vulnerability scan failed: {str(e)}")
@app.post("/analyze_logs")
async def analyze_security_logs(request: LogAnalysisRequest):
"""Analyze security logs for threats and anomalies"""
try:
# Simulate log analysis
log_lines = request.log_data.split('\n')
suspicious_patterns = [
"failed login", "access denied", "suspicious activity",
"malware detected", "unusual traffic", "privilege escalation"
]
threats_found = []
for line in log_lines[:50]: # Analyze first 50 lines
for pattern in suspicious_patterns:
if pattern in line.lower():
threats_found.append({
"pattern": pattern,
"log_entry": line.strip(),
"severity": random.choice(["HIGH", "MEDIUM", "LOW"])
})
return {
"analysis_id": f"LOG-{datetime.now().strftime('%Y%m%d-%H%M%S')}",
"log_type": request.log_type,
"events_analyzed": len(log_lines),
"threats_detected": len(threats_found),
"threat_details": threats_found[:10], # Return top 10
"analysis_timestamp": datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Log analysis failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Log analysis failed: {str(e)}")
@app.get("/health")
async def health_check():
"""System health check"""
return {
"status": "operational",
"platform": "Cyber-LLM Operations Center",
"version": "2.0.0",
"threat_intel_db": "online",
"vulnerability_scanner": "ready",
"incident_response": "active",
"timestamp": datetime.now().isoformat()
}
@app.get("/threat_intelligence")
async def threat_intelligence_summary():
"""Get advanced threat intelligence summary with APT attribution"""
return {
"total_indicators": len(ADVANCED_THREAT_INTELLIGENCE["malicious_ips"]) +
len(ADVANCED_THREAT_INTELLIGENCE["suspicious_domains"]) +
len(ADVANCED_THREAT_INTELLIGENCE["vulnerabilities"]),
"malicious_ips": len(ADVANCED_THREAT_INTELLIGENCE["malicious_ips"]),
"suspicious_domains": len(ADVANCED_THREAT_INTELLIGENCE["suspicious_domains"]),
"tracked_apt_groups": len(ADVANCED_THREAT_INTELLIGENCE["apt_groups"]),
"malware_families": len(ADVANCED_THREAT_INTELLIGENCE["malware_families"]),
"attack_techniques": len(ADVANCED_THREAT_INTELLIGENCE["attack_techniques"]),
"recent_vulnerabilities": len(ADVANCED_THREAT_INTELLIGENCE["vulnerabilities"]),
"apt_groups": list(ADVANCED_THREAT_INTELLIGENCE["apt_groups"].keys()),
"top_malware_families": list(ADVANCED_THREAT_INTELLIGENCE["malware_families"].keys())[:5],
"last_updated": datetime.now().isoformat()
}
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port)
|